cho tam giác ABC và một đường thẳng xy đi qua điểm A.Hạ BB'và CC 'vuông góc với xy.xác định vị trí của đường thẳng xy để BB'+CC' lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


có
thay a=100..0000{63chu so 0}
ta co
a mu 40 < k > a mu 40 .a
vay khoang cach la 10....000 co 63 chu so 0
suy ra k=100...000 co 62 chu so 0

a3(c - b2) + b3(a - c2) + c3(b - a2) + abc(abc - 1)
= a3c - a3b2 + ab3 - b3c2 + bc3 - a2c3 + a2b2c2 - abc
= a2b2c2 - b3c2 - (a2c3 - bc3) - (a3b2 - ab3) + (a3c - abc)
= b2c2(a2 - b) - c3(a2 - b) - ab2(a2 - b) + ac(a2 - b)
= (a2 - b)(b2c2 - c3 - ab2 + ac) = (a2 - b)[c2(b2 - c) - a(b2 - c)] = (a2 - b)(b2 - c)(c2 - a)

Có: \(\frac{a^2}{1-a}=\frac{a^2-1+1}{1-a}=\frac{a^2-1}{1-a}+\frac{1}{1-a}=-\left(a+1\right)+\frac{1}{1-a}\)
Suy ra:
\(\frac{a^2}{1-a}+\frac{b^2}{1-b}+\frac{1}{a+b}+a+b\)
\(=\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}+a+b-a-1-b-1\)
\(=\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}-2\).
Áp dụng bất đẳng thức: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)ta có:
\(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}\ge\frac{9}{1-a+1-b+a+b}=\frac{9}{2}\).
Suy ra: \(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{a+b}-2\ge\frac{9}{2}-2=\frac{5}{2}.\)
Vậy ta có đpcm.

Ta có: \(\hept{\begin{cases}4k\equiv-1\left(modp\right)\\4k-1\equiv-2\left(modp\right)\end{cases}}\)
\(\Rightarrow\left(4k\right)!\equiv\left[\left(2k\right)!\right]^2\left(modp\right)\)
Theo định lý Wilson kết hợp với định lý Fecma nhỏ ta có:
Với \(n=4k\left(2k\right)!\) thì:
\(2^n-1\left[2^{\left(2k\right)!}\right]^{4k}-1\equiv0\left(modp\right)\)
\(\Rightarrow n^2+2^n=\left[4k.\left(2k\right)!\right]^2+2^{4k\left(2k\right)!}\equiv0\left(modp\right)\)
\(\Rightarrow\) Có vô số giá trị của \(n\) thỏa mãn.

hãy đổi các lũy thừa và xét từng số một trong biểu thức để xem nó có phải là hợp số hay không và kết luận

\(A=x^3-3x^2+3x-1\\ A=x^3-3x^2.1+3x.1^2-1^3\\ A=\left(x-1\right)^3\)
Thay x=101 vào biểu thức trên ta được kết quả là 100^3= 1000000

(x^99+x^11)+(x^55+x)+7 =x^11(x^88+1)+x(x^54+1)+7 =x^11(x^22+1) (x^66-x^44+x^22-1) + x(x^54+1)+7 = A+7 mà ta có:
a^n+1=(a+1)(a^(n-1)-a^(n-2)+.....-1) (với n là lẻ) vậy a^n+1 chia hết cho a+1 với a lsf x^2,n lần lượt là 11 và 27=>A chia hết cho x^2+1 Xét 7(x^2+1) dư b nếu x=0 thì b=0 x=+ -1 thì b=1 x=+ -2 thì b=2 x>2 thì b=7 đó cũng là số dư của A+7 chia cho x^2+1. và là số dư cần tìm

Trên cạnh BC lấy M là trung điểm. Qua M kẻ đường thẳng vuông góc với B'C' tại D
Ta có \(\hept{\begin{cases}BB'\text{//}MD\text{//}CC'\\BM=MC\end{cases}\Rightarrow}\)MD là đường trung bình của hình thang BCC'B'
\(\Rightarrow BB'+CC'=2MD\)
Mặt khác, ta luôn có \(DM\le AM\left(\text{hằng số}\right)\)
Do đó \(BB'+CC'\le2AM\)
Vậy BB'+CC' đạt giá trị lớn nhất bằng 2AM khi \(xy\perp MA\) tại A
cho tau 1 đúng thì ta cho nick idgunny