Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho tam giác ABC có A=45∘,AB=6,B=75∘. Độ dài cạnh BC bằng
Giá trị của biểu thức P=sin30∘.cos60∘+sin60∘.cos30∘ là
Miền nghiệm của hệ bất phương trình ⎩⎨⎧x−2y<0x+3y>−2y−x<3 chứa điểm nào sau đây?
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Hình biểu diễn của tập hợp A={x∈R1≤x<3} (phần không bị gạch) trên trục số là




Cho tập hợp B gồm các số nguyên tố có một chữ số. Tập hợp B viết bằng cách liệt kê các phần tử của tập hợp là
Cho hai mệnh đề: P: "30 không chia hết cho 5" và Q: "π<3,15". Khẳng định nào sau đây đúng?
Tam giác ABC có A=105∘, B=45∘, AC=10. Độ dài cạnh AB bằng
Đẳng thức nào sau đây sai?
Trong tam giác ABC có bán kính đường tròn ngoại tiếp R, hệ thức nào sau đây sai?
Cho biết cosα=−32. Giá trị của P=2cotα+tanαcotα+3tanα bằng
Phần tô màu (không bao gồm đường thẳng d) trong hình vẽ là miền nghiệm của bất phương trình nào sau đây?
Cho các hệ bất phương trình sau:⎩⎨⎧x−2y≤05x−y≥−4x+2y≤5, ⎩⎨⎧−x−y<4−x+2y>−2x+y<8x≥−6y≤6.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Miền nghiệm của hệ bất phương trình ⎩⎨⎧x−2y≤05x−y≥−4x+2y≤5 là miền tam giác. |
|
b) Điểm M(1;1) thỏa mãn miền nghiệm của hệ bất phương trình ⎩⎨⎧x−2y≤05x−y≥−4x+2y≤5. |
|
c) Miền nghiệm của hệ bất phương trình ⎩⎨⎧−x−y<4−x+2y>−2x+y<8x≥−6y≤6 là miền tứ giác. |
|
d) Điểm O(0;0) không thỏa mãn miền nghiệm của hệ bất phương trình ⎩⎨⎧−x−y<4−x+2y>−2x+y<8x≥−6y≤6. |
|
Cho ba tập hợp: A=(−∞;1]; B=[−2;2] và C=(0;5).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) C⊂A. |
|
b) A∩C=(0;1]. |
|
c) A∩B=(−2;1). |
|
d) (A∩B)∪(A∩C)=[−2;1]. |
|
Cho P(x): "x2−x−2=0" với x là các số thực.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) x=0 thì P(x) là mệnh đề đúng. |
|
b) P(−1) là mệnh đề sai. |
|
c) P(x) luôn là mệnh đề sai với x là các số thực bất kì. |
|
d) P(2) là mệnh đề đúng. |
|
Cho các tập hợp CRA=[−3;8), CRB=(−5;2)∪(3;11).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) A=(−∞;−3)∪[8;+∞). |
|
b) B=(−∞;−5)∪(11;+∞). |
|
c) A∩B=(−∞;−5)∪[8;+∞). |
|
d) CR(A∩B)=(−5;11). |
|
Trong đợt quyên góp ủng hộ đồng bào miền Bắc bị lũ lụt năm 2024, có 25 học sinh lớp 2A đã tham gia ủng hộ, mỗi học sinh ủng hộ nhiều nhất hai tờ tiền khác nhau trong ba loại tờ tiền mệnh giá 5 000 đồng, 10 000 đồng và 20 000 đồng. Biết rằng số học sinh đã tham gia ủng hộ thỏa mãn đồng thời ba kết quả sau:
(1) Số học sinh chỉ ủng hộ một tờ 5 000 đồng bằng tổng số học sinh chỉ ủng hộ một tờ 10 000 đồng và số học sinh chỉ ủng hộ một tờ 20 000 đồng.
(2) Trong số học sinh không ủng hộ tờ 5 000 đồng thì số học sinh có ủng hộ tờ 10 000 đồng nhiều gấp hai lần số học sinh có ủng hộ tờ 20 000 đồng.
(3) Số học sinh chỉ ủng hộ một tờ 5 000 đồng nhiều hơn số học sinh ủng hộ tờ 5 000 đồng và một tờ khác là 1 học sinh.
Có bao nhiêu học sinh lớp 2A chỉ ủng hộ một tờ 10 000 đồng?
Trả lời:
Cho hai tập hợp khác rỗng A=(m−3;5], B=(−2;3m+1) với m∈R. Tìm số nguyên m lớn nhất để A⊂B.
Trả lời:
Để chuẩn bị cho đại hội chi đoàn 10A1, bạn Nga được phân công đi mua hoa để cắm vào 3 lọ, mỗi lọ cắm số hoa mỗi loại như nhau. Bạn Nga được lớp giao cho 200 nghìn đồng để mua nhưng đến quầy bán chỉ còn 2 loại hoa và đã mua đủ để cắm. Biết rằng một loại hoa có giá 15 nghìn đồng/bông và một loại có giá 20 nghìn/bông. Số tiền dư ra ít nhất có thể là bao nhiêu nghìn đồng?
Trả lời:
Tìm giá trị nhỏ nhất của biểu thức F=y−x trên miền xác định bởi hệ ⎩⎨⎧y−2x≤22y−x≥4x+y≤5.
Trả lời:
Theo nghiên cứu, mỗi kilôgam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipit., mỗi kilôgam thịt lợn chứa 600 đơn vị protein và 400 đơn vị lipit. Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit trong thức ăn mỗi ngày. Biết rằng gia đình này chỉ mua nhiều nhất 1,6 kg thịt bò và 1,1 kg thịt lợn. Giá tiền một kg thịt bò là 160 nghìn đồng, một kg thịt lợn là 110 nghìn đồng. Gọi x,y lần lượt là số kg thịt bò và thịt lợn mà gia đình đó cần mua để tổng số tiền họ phải trả là ít nhất mà vẫn đảm bảo lượng protein và lipit trong thức ăn. Tính x2+y2 (làm tròn đến chữ số thập phân thứ nhất).
Trả lời:
Từ vị trí A người ta quan sát một cây cao. Biết AH=4 m, HB=20 m, BAC=45∘. Tính chiều cao của cây (Làm tròn kết quả đến chữ số thập phân thứ nhất của đơn vị mét)
Trả lời: