Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Phiếu bài tập: Dấu của tam thức bậc hai SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho bảng xét dấu của tam thức f(x)=ax2+bx+c với a=0:
Tập hợp tất cả các giá trị x để f(x)>0 là
Cho bảng xét dấu của tam thức bậc hai y=f(x)=ax2+bx+c với a=0 như sau:
Tập hợp các giá trị của x để f(x)≥0 là
Cho f(x)=ax2+bx+c (với a=0) có Δ=b2−4ac<0. Khi đó mệnh đề nào sau đây đúng?
Cho f(x)=ax2+bx+c với a=0 và Δ=b2−4ac.
Điền vào các ô trống để được các khẳng định đúng:
1) Nếu Δ
- =
- >
- <
2) Nếu Δ=0 thì f(x)
- trái dấu
- cùng dấu
3) Nếu Δ>0 thì:
f(x) cùng dấu với a khi x nằm
- ngoài
- trong
f(x) trái dấu với a khi x nằm
- trong
- ngoài
Cho hàm số y=f(x)=−x2+1 có đồ thị như hình dưới đây:
Hoàn thành bảng xét dấu sau đây của f(x):
x | −∞ | +∞ | |||||||
−x2+1 |
Tam thức f(x)=(m+2)x2+2(m+2)x+m+3 không âm với mọi x khi
Tam thức bậc hai f(x)=x2+(1−3)x−8−53 luôn
Số giá trị nguyên của x để tam thức f(x)=2x2−7x−9 nhận giá trị âm là
Tam thức bậc hai −x2+5x−6 nhận giá trị dương khi và chỉ khi
Tam thức f(x)=mx2−mx+m+3 âm với mọi x khi