Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Phiếu bài tập: Dấu của tam thức bậc hai SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho f(x)=ax2+bx+c (với a=0). Điều kiện để f(x)<0, ∀x∈R là
Cho f(x)=ax2+bx+c (với a=0) có Δ=b2−4ac<0. Khi đó mệnh đề nào sau đây đúng?
Cho bảng xét dấu của tam thức f(x)=ax2+bx+c với a=0:
Tập hợp tất cả các giá trị x để f(x)>0 là
Cho bảng xét dấu của tam thức bậc hai y=f(x)=ax2+bx+c với a=0 như sau:
Tập hợp các giá trị của x để f(x)≥0 là
Cho hàm số y=f(x)=−x2+1 có đồ thị như hình dưới đây:
Hoàn thành bảng xét dấu sau đây của f(x):
x | −∞ | +∞ | |||||||
−x2+1 |
Tam thức f(x)=(m+2)x2+2(m+2)x+m+3 không âm với mọi x khi
Tam thức bậc hai f(x)=x2+(1−3)x−8−53 luôn
Cho f(x)=x2−4x+3. Mệnh đề nào sau đây đúng?
Tam thức bậc hai f(x)=x2+(5−1)x−5 nhận giá trị dương khi và chỉ khi
Tam thức f(x)=mx2−mx+m+3 âm với mọi x khi