Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Kiểm tra cuối chương I SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Hàm số y=x3−x2−x+3 nghịch biến trên khoảng nào sau đây?
Cho hàm số y=f(x) có đạo hàm y=f′(x)=x(x−2),∀x∈R. Hàm số y=f(x) nghịch biến trên khoảng nào dưới đây?
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ dưới đây.
Giá trị cực đại của hàm số là
Hàm số y=x3−3x2−1 đạt cực trị tại các điểm nào sau đây?
Giá trị nhỏ nhất của hàm số y=x3−3x+5 trên đoạn [2;4] là
Giá trị nhỏ nhất của hàm số y=f(x)=x3+3x trên đoạn [−1;2] bằng
Hàm số nào sau đây có đồ thị như hình vẽ?
Đường thẳng y=ax+b với a,b∈R và a=0 là tiệm cận xiên của đồ thị hàm số y=f(x). Mệnh đề nào sau đây đúng?
Hình vẽ trên là bảng biến thiên của hàm số nào sau đây?
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?
Hàm số nào sau đây đồng biến trên (1;3)?
Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình vẽ.
Số điểm cực trị của hàm số y=f(x) là
Một công ty sản xuất máy tính đã xác định được rằng, tính trung bình một nhân viên có thể lắp ráp được N(x)=x+450x, (x≥0) bộ phận mỗi ngày sau x ngày đào tạo. Coi y=N(x) là một hàm số xác định trên [0;+∞), khi đó tiệm cận ngang của đồ thị hàm số đó là
Đường cong trong hình vẽ sau là đồ thị của hàm số y=x3−3x+1. Với giá trị nào của tham số m thì phương trình x3−3x+1−m=0 có ba nghiệm thực phân biệt?
Một cơ sở đóng giày sản xuất mỗi ngày được x đôi giày (1≤x≤20). Tổng chi phí sản xuất x đôi giày (đơn vị nghìn đồng) là C(x)=x3−6x2−88x+592. Giả sử cơ sở này bán hết sản phẩm mỗi ngày với giá 200 nghìn đồng/một đôi. Gọi T(x) là số tiền bán được và L(x) là lợi nhuận thu được sau khi bán hết x đôi giày.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Giả sử trong một ngày nào đó cơ sở sản xuất được 10 đôi giày thì lợi nhuận thu được là 1888000 (đồng). |
|
b) Giả sử trong một ngày nào đó cơ sở lợi nhuận thu được là 1584000 đồng, khi đó cơ sở phải sản xuất được 9 đôi giày. |
|
c) Cơ sở này sản xuất được 12 đôi giày thì lợi nhuận thu được là nhiều nhất. |
|
d) Lợi nhuận tối đa thu được trong một ngày là 1980000 đồng. |
|
Trong một trò chơi thử thách, bạn Giáp đang ở trên thuyền (vị trí A) cách bờ hồ (vị trí C) 300 m và cần đi đến vị trí B trên bờ hồ như hình vẽ, khoảng cách từ C đến B là 400 m, lưu ý là Giáp có thể chèo thuyền thẳng từ A đến B hoặc chèo thuyền từ A đến một điểm nằm giữa C và B rồi chạy bộ đến B.
Biết rằng Giáp chèo thuyền với tốc độ 50 m/phút và chạy bộ với tốc độ 100 m/phút.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Thời gian Giáp chèo thuyền thẳng từ A đến B là là 10 phút. |
|
b) Thời gian Giáp chèo thuyền từ A đến C rồi chạy bộ từ C đến B là là 10 phút. |
|
c) Giả sử Giáp chèo thuyền thẳng đến điểm D nằm giữa B và C và cách C một đoạn x (m) như hình vẽ dưới đây, rồi chạy bộ đến B thì thời gian Giáp đi từ A đến B được tính bằng công thức f(x)=1001(x2+90000+400−x) (phút).![]() |
|
d) Thời gian nhanh nhất để Giáp đi từ A đến B xấp xỉ 9,2 phút (kết quả làm tròn đến hàng phần mười). |
|
Cho hàm số y=cx+dax+1 có đồ thị như hình vẽ.
a) Hàm số nghịch biến trên từng khoảng xác định. |
|
b) x→+∞limy=−1. |
|
c) x→(−1)+limy=−∞. |
|
d) Hệ số a=1. |
|
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
a) Hàm số y=f(x) có giá trị cực tiểu bằng 1. |
|
b) Đồ thị hàm số y=f(x) có điểm cực tiểu là (1;−1). |
|
c) Hàm số y=f(x) đạt cực đại tại x=0. |
|
d) Hàm số y=f(x) có đúng một cực trị. |
|
Từ một miếng tôn có hình dạng là một nửa hình tròn bán kính R=3, người ta cắt ra một miếng hình chữ nhật MNPQ như mô tả trong hình vẽ.
Diện tích lớn nhất có thể có của hình chữ nhật nêu trên là bao nhiêu (đơn vị diện tích)? (Làm tròn kết quả đến chữ số hàng đơn vị)
Trả lời:
Một cửa hàng kinh doanh rau tươi ước tính doanh thu bởi hàm số f(x)=x2−29000x+1000100000 (đồng) và tiền lãi thu được là g(x)=1000x+100000 (đồng) với x (đồng) là giá bán cho mỗi kg rau tươi. Biết doanh thu bằng tổng tiền lãi và tiền vốn. Tìm giá bán mỗi kg rau tươi (đơn vị nghìn đồng) sao cho cửa hàng phải bỏ vốn ra ít nhất.
Trả lời:
Tính tổng các giá trị của tham số m để đồ thị của hàm số y=x2+2(m−1)x+m2−2x−1 có đúng một tiệm cận đứng. (làm tròn kết quả đến hàng phần mười)
Trả lời:
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 300 km, vận tốc dòng nước là 6 km/h. Nếu vận tốc bơi của cá khi nước đứng yên là v (km/h) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v)=cv3t, trong đó c là hằng số và E tính bằng Jun. Tính vận tốc bơi của cá (km/h) khi nước đứng yên để năng lượng tiêu hao ít nhất.
Trả lời:
Cho hàm số y=f(x) liên tục trên [1;3] và có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của m để phương trình f(x+1)=x2−4x+5m có nghiệm trên khoảng (1;2)?
Trả lời: