Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một tập xác định SVIP
Cho hàm số y=f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên sau:
Khẳng định nào sau đây đúng?
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−1;2] là
Cho hàm số bậc ba y=f(x) có đồ thị như hình vẽ:
Trên đoạn [0;1], hàm số y=f(x) đạt giá trị nhỏ nhất tại
Cho hàm số y=f(x) liên tục trên đoạn [−1;3] và có đồ thị như hình vẽ.
Giá trị lớn nhất của hàm số đã cho trên đoạn [−1;3] bằng
Cho hàm số y=f(x) có đồ thị như hình vẽ dưới.
Giá trị lớn nhất của hàm số trên [−3;4] bằng
Cho hàm số y=f(x) có đồ thị trên đoạn [−1;1] là đường cong như hình vẽ.
Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của f(x) trên đoạn [−1;1]. Khi đó biểu thức M−m bằng
Cho hàm số y=f(x) có bảng xét dấu đạo hàm như sau.
Mệnh đề nào sau đây đúng?
Cho hàm số y=f(x) xác định và liên tục trên khoảng (−∞;21) và (21;+∞). Đồ thị hàm số y=f(x) là đường cong trong hình vẽ.
Khẳng định nào sau đây đúng?
Cho hàm số y=f(x) liên tục trên R và có bảng biến thiên như hình dưới đây:
Khi đó giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−10;10] bằng
Cho hàm số y=f(x) có đồ thị của đạo hàm y=f′(x) như hình vẽ.
Giá trị lớn nhất của hàm số f(x) trên đoạn [−1;4] bằng
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau.
a) Hàm số có giá trị cực đại bằng 3. |
|
b) Hàm số có hai điểm cực trị. |
|
c) Hàm số có giá trị lớn nhất bằng 1, nhỏ nhất bằng −31. |
|
d) Đồ thị hàm số không cắt trục hoành. |
|
Cho hàm số y=f(x) liên tục và có đồ thị trên đoạn [−2;4] như hình vẽ.
a) Trên đoạn [−2;4], đồ thị hàm số y=f(x) có 2 điểm cực trị. |
|
b) Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;2] là −2. |
|
c) Giá trị lớn nhất của hàm số y=f(x) trên đoạn [1;4] là −4. |
|
d) Hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;4] là 11. |
|
Cho hàm số y=f(x) liên tục trên đoạn [−1;3] và có đồ thị như hình vẽ.
a) Hàm số y=f(x) nghịch biến trên khoảng (0;2). |
|
b) [0;2]maxf(x)=1. |
|
c) Gọi M,m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn [−1;3]. Giá trị của M+m là 2. |
|
d) Xét hàm số g(x)=f(x+1) thì [0;2]maxg(x)=−3. |
|