Bài học cùng chủ đề
- Đề tập huấn thi tốt nghiệp THPT 2025 môn Toán sở GD&ĐT Bắc Ninh
- Đề khảo sát chất lượng Toán 12 năm 2024 – 2025 sở GD&ĐT Hà Nội
- Đề thi thử TN THPT năm 2024 – 2025 sở GD&ĐT Nghệ An
- Đề thi thử TN THPT năm 2024 – 2025 Sở GD&ĐT Hải Phòng lần 2
- Đề thi thử TN THPT năm 2024 – 2025 Sở GD&ĐT Bình Phước
- Đề thi thử TN THPT năm 2024 – 2025 Sở GD&ĐT Đồng Tháp
- Đề thi thử TN THPT năm 2024 - 2025 lần 2 Sở GD&ĐT Thành phố Huế
- Đề khảo sát chất lượng Toán 12 lần 2 năm 2024 – 2025 sở GD&ĐT Vĩnh Phúc
- Đề thi thử TN THPT năm 2024 – 2025 Sở GD&ĐT Hải Dương
- Đề thi thử TN THPT năm 2024 – 2025 Sở GD&ĐT Nghệ An Lần 2
- Đề thi thử tốt nghiệp THPT năm 2025 môn Toán sở GD&ĐT Hà Tĩnh
- Đề thi thử tốt nghiệp THPT năm 2025 môn Toán sở GD&ĐT Hưng Yên
- Đề thi thử tốt nghiệp THPT năm 2025 môn Toán sở GD&ĐT Đà Nẵng
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề thi thử TN THPT năm 2024 - 2025 lần 2 Sở GD&ĐT Thành phố Huế SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=cx+dax+b,(c=0,ad−bc=0) có đồ thị như hình sau:
Đường thẳng nào sau đây là đường tiệm cận đứng của đồ thị hàm số đã cho?
Cho cấp số nhân (un) có u1=2 và u2=8. Công bội của cấp số nhân đã cho bằng
Tập nghiệm của bất phương trình log0,5(x−1)>−3 là
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Khi đó SA+BC bằng
Trong không gian Oxyz, cho mặt phẳng (P):x+y−2z=1. Một vectơ pháp tuyến của mặt phẳng (P) là
Trong các phương trình sau, phương trình nào vô nghiệm?
Các bạn học sinh lớp 11A trả lời 40 câu hỏi trong một bài kiểm tra. Kết quả được thống kê ở bảng sau:
Số câu trả lời đúng | Số học sinh |
[16;21) | 4 |
[21;26) | 6 |
[26;31) | 8 |
[31;36) | 18 |
[36;41) | 4 |
Nhóm có tần số lớn nhất là
Cho hàm số y=f(x) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B, SA⊥(ABC). Góc giữa hai mặt phẳng (SBC) và (ABC) là
Cho hàm số y=f(x) có đạo hàm liên tục trên đoạn [a;b] và f(a)=−1;f(b)=3. Khi đó ∫abf′(x)dx bằng
Trong không gian Oxyz, đường thẳng d đi qua điểm M(1;−1;3) và song song với đường thẳng d1:2x−2=1y+1=−1z+3 có phương trình là
Diện tích S của hình phẳng được giới hạn bởi đồ thị hàm số y=f(x), trục Ox và các đường thẳng x=a,x=b(a<b) là
Thống kê điểm thi đánh giá năng lực của 120 học sinh ở một trường THPT ở địa bàn thành phố Huế với thang điểm 100 được cho ở bảng sau:
Điểm | [0;20) | [20;40) | [40;60) | [60;80) | [80;100] |
Số học sinh | 25 | 34 | 15 | 38 | 8 |
a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 100. |
|
b) Số học sinh đạt điểm 60 trở lên là 38 học sinh. |
|
c) Số điểm trung bình của học sinh đạt được từ bảng số liệu trên là 54 điểm. |
|
d) Chọn ngẫu nhiên một học sinh từ 120 học sinh trên, xác suất chọn được học sinh có điểm thuộc nhóm chứa trung vị là 81. |
|
Trong không gian Oxyz, cho đường thẳng d:2x−1=1y+2=−3z+1 và điểm A(2;−5;−6).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đường thẳng d có một vectơ chỉ phương là u=(2;1;−3). |
|
b) Mặt phẳng đi qua A và vuông góc với d có phương trình là 2x+y−3z+17=0. |
|
c) Gọi H là hình chiếu vuông góc của A lên d. Tọa độ của H là H(3;−1;−4). |
|
d) Gọi (P) là mặt phẳng chứa đường thẳng d sao cho khoảng cách từ A đến (P) lớn nhất, khi đó phương trình của mặt phẳng (P) là x+4y+2z+7=0. |
|
Ông An có một mảnh đất hình vuông ABCD có cạnh AB=12 m. Ông làm một hồ bơi dạng hình thang cong (phần tô đậm) và một lối đi là đoạn thẳng HB. Nếu đặt hệ trục tọa độ có gốc tại A như hình vẽ, độ dài đơn vị là 1 m, thì đường cong EFIG là một phần đồ thị của một hàm bậc ba y=f(x) có F là điểm cực tiểu và I là điểm cực đại. Biết CH=DE=GB=3 m và các điểm F,I cách cạnh AD lần lượt là 2m và 6 m.
a) Phương trình của đường thẳng HB là y=−4x+48. |
|
b) Tồn tại a∈R sao cho f′(x)=a(x+2)(x+6). |
|
c) Tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ bằng 7 song song với đường thẳng HB. |
|
d) Ông An cần đặt một cái thang lên xuống hồ bơi tại một điểm trên đường cong EFIG sao cho khoảng cách từ điểm đặt thang đến lối đi là ngắn nhất, khoảng cách đó bằng 2,56 m (kết quả làm tròn đến hàng phần trăm). |
|
Một người đang lái xe ô tô thì bất ngờ phát hiện chướng ngại vật trên đường cách đầu xe 25 m , ngay lúc đó người lái xe đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với vận tốc v(t)=−10t+20 (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quãng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Quãng đường s(t) mà xe ô tô đi được trong t (giây) là một nguyên hàm của hàm số v(t). |
|
b) s(t)=−5t2+20. |
|
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 20 giây. |
|
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. |
|
Cho hình chóp S.ABCD có đáy là hình vuông có cạnh bằng 42, các cạnh bên bằng nhau và cùng bằng 26. Tính khoảng cách giữa hai đường thẳng AD và SC.
Trả lời:
Bạn Thuận có một danh sách gồm 6 bài hát khác nhau, các bài hát được phát theo thứ tự từ trên xuống. Lần đầu, khi nghe xong bài hát thứ ba trong danh sách, bạn ấy xáo trộn ngẫu nhiên danh sách phát của mình và sau đó nghe 3 bài hát đầu tiên trong danh sách mới. Tính xác suất để bạn Thuận nghe đủ 6 bài hát khác nhau sau hai lần nghe (kết quả làm tròn đến hàng phần trăm).
Trả lời:
Người ta thường dùng cẩu trục tháp (như hình vẽ) để vận chuyển vật liệu xây dựng; thân tháp vuông góc với mặt đất, cần nâng vuông gọ́c thân tháp dùng để làm điểm tựa nâng vật liệu, trên cần nâng có bộ phận gọi là xe con, có thể chạy dọc cần nâng nhằm di chuyển vật liệu. Ban đầu vật liệu ở mặt đất, cẩu trục dùng móc cẩu nâng vật liệu lên cao theo phương thẳng đứng và cao hơn 1 m so với vị trí cần đặt, sau đó giữ nguyên độ cao và cẩu trục quay cần nâng một góc α∈(0∘;180∘) sao cho quỹ đạo tạo thành một cung tròn cho đến khi mặt phẳng (P) chứa cần nâng và điểm cần đặt vuông góc với mặt đất (vật liệu và điểm cần đặt cùng nằm trên một nửa mặt phẳng (P) so với thân tháp). Tiếp đến điều chỉnh xe con nhằm di chuyển và hạ vật liệu xuống 1 m theo phương thẳng đứng đúng vị trí cần đặt. Giả sử rằng trong không gian với hệ trục tọa độ Oxyz, thân tháp là trục Oz và mặt đất là mặt phẳng Oxy (đơn vị tính bằng mét); vị trí ban đầu của vật liệu là điểm A(6;8;0) và vị trí cần đặt vật liệu là điểm B(4;−3;15). Tính quãng đường vật liệu đã di chuyển (kết quả làm tròn đến hàng phần mười).
Trả lời:
Một lều cắm trại có dạng như hình vẽ dưới, khung lều được tạo thành từ hai parabol giống nhau có chung đỉnh O và thuộc hai mặt phẳng vuông góc nhau (một parabol đi qua A,O,C và một parabol đi qua B,D,O), bốn chân tạo thành hình vuông ABCD có cạnh là 22 (m), chiều cao tính từ đỉnh lều là 2 m . Biết mặt cắt của lều khi cắt bởi một mặt phẳng song song với mặt phẳng (ABCD) luôn là một hình vuông. Tính thể tích của lều (đơn vị là m3).
Trả lời:
Một hộ làm nghề dệt vải lụa tơ tằm sản xuất mỗi ngày được x mét vải lụa (1≤x≤20). Tổng chi phí sản xuất x mét vải lụa cho bởi hàm chi phí C(x)=3623x3+x2+200 (tính bằng nghìn đồng). Giá của vải lụa tơ tằm là 300 nghìn đồng/mét và giả sử hộ luôn bán hết số sản phẩm làm ra trong một ngày. Để đạt lợi nhuận tối đa thì mỗi ngày thì hộ cần sản xuất bao nhiêu mét vải lụa?
Trả lời:
Bạn Hóa muốn leo núi với địa điểm xuất phát từ A và kết thúc tại B với bản đồ đường đi được minh họa bởi hình vẽ dưới, trong đó các đường đi là các đoạn thẳng và thời gian di chuyển (tính bằng phút) tương ứng được gắn bởi một số trên đoạn thẳng đó. Hãy xác định thời gian ngắn nhất (tính bằng phút) để bạn Hóa hoàn thành chuyến đi từ A đến B.
Trả lời: