Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề số 2 (cấu trúc mới) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Tập xác định của hàm số y=x−1+2−x là
Hàm số nào có đồ thị như hình vẽ bên dưới?
Bảng xét dấu nào sau đây là bảng xét dấu của tam thức f(x)=−x2+6x−9?




Tủ lạnh nhà bạn Đô có 20 hộp sữa và 15 cái bánh quy, trong đó có 12 hộp sữa có hương dâu và 8 hộp sữa sô cô la, 8 cái bánh quy hương sô cô la và 7 cái bánh quy hương dâu. Bạn Đô đang cần lựa 1 món bánh sô cô la và 1 hộp sữa dâu để ăn bữa chiều thì Đô có bao nhiêu cách chọn?
Hệ số của x3 trong khai triển Newton biểu thức (2x+1)5 bằng
Trong mặt phẳng Oxy, côsin góc giữa hai đường thẳng Δ1:3x+4y+1=0 và Δ2:{x=15+12ty=1+5t bằng
Tâm đường tròn x2+y2−10x+1=0 cách trục Oy một khoảng bằng
Trong mặt phẳng tọa độ Oxy cho đường tròn (C) có phương trình x2+(y−3)2=1 và điểm M(1;3) thuộc đường tròn (C). Phương trình tiếp tuyến của đường tròn (C) tại điểm M(1;3) là
Parabol (P):y2=8x có tiêu điểm
Gieo 3 đồng tiền là một phép thử ngẫu nhiên có không gian mẫu là
Phương trình x2+2x−3=5−x có nghiệm là x=ba. Khi đó a+2b bằng
Chọn ngẫu nhiên 2 thẻ trong 9 thẻ được đánh số từ 1 đến 9. Xác suất để tích hai thẻ lấy ra là một số chẵn bằng
Cho elip có phương trình chính tắc 25x2+9y2=1.
(Nhấp vào dòng để chọn đúng / sai)Elip có tiêu cự bằng 8. |
|
Elip có tiêu điểm F1(−4;0). |
|
Điểm A(5;3) thuộc đường elip. |
|
MF1+MF2=12, với M là một điểm thuộc đường elip. |
|
Trong hệ trục tọa độ Oxy, cho điểm I(1;1) và đường thẳng (d):3x+4y−2=0.
(Nhấp vào dòng để chọn đúng / sai)Khoảng cách từ điểm I(1;1) đến đường thẳng (d):3x+4y−2=0 bằng 1. |
|
Đường tròn tâm I(1;1) và tiếp xúc với đường thẳng (d):3x+4y−2=0 có phương trình chính tắc là (x−1)2+(y−1)2=1. |
|
Đường tròn tâm I(1;1) và tiếp xúc với đường thẳng (d):3x+4y−2=0 có phương trình tổng quát là x2+y2−2x−2y+1=0. |
|
Đường thẳng đi qua điểm I(1;1) và vuông góc với đường thẳng (d):3x+4y−2=0 có phương trình tổng quát là 3x+4y−7=0. |
|
Cho tập S={1;2;3;4;5}.
(Nhấp vào dòng để chọn đúng / sai)a) Lập được 60 số có 3 chữ số khác nhau từ tập S. |
|
b) Lập được 9 số có 5 chữ số khác nhau lấy từ tập S, sao cho số đó chia hết cho 5 và số đứng đầu là 1. |
|
c) Lập được 100 số có 3 chữ số từ tập S nhỏ hơn 225. |
|
d) Lập được 320 số có 4 chữ số từ tập S sao cho số các chữ số giống nhau không được đứng cạnh nhau. |
|
Có 100 tấm thẻ được đánh số từ 1 đến 100. Lấy ngẫu nhiên 5 thẻ.
(Nhấp vào dòng để chọn đúng / sai)Số phần tử của không gian mẫu là C1005. |
|
Xác suất để 5 thẻ lấy ra đều mang số chẵn là 21. |
|
Xác suất để 5 thẻ lấy ra có 2 thẻ mang số chẵn và 3 thẻ mang số lẻ xấp xỉ bằng 0,32. |
|
Xác suất để có ít nhất một số ghi trên thẻ được chọn chia hết cho 3 xấp xỉ bằng 0,78. |
|
Trong một dịp quay xổ số, có ba loại giải thưởng: 1 000 000 đồng, 500 000 đồng, 100 000 đồng. Nơi bán có 100 tờ vé số, trong đó có 1 vé trúng thưởng 1 000 000 đồng, 5 vé trúng thưởng 500 000 đồng, 10 vé trúng thưởng 100 000 đồng. Một người mua ngẫu nhiên 3 vé. Tính xác suất của biến cố "Người mua đó trúng thưởng ít nhất 300 000 đồng". (Làm tròn kết quả tới chữ số thập phân thứ ba)
Trả lời:
Cho hai đường thẳng Δ1 và Δ2 vuông góc với nhau. Một chất điểm chuyển động trong một góc vuông tạo bởi Δ1 và Δ2 có tính chất: ở mọi thời điểm, tích khoảng cách từ mỗi vị trí của chất điểm đến hai đường thẳng Δ1 và Δ2 luôn bằng 4.
Biết rằng chất điểm chuyển động trên một phần của đường hypebol có phương trình dạng mx2−ny2=1. Tính m−n.
Trả lời:
Phương trình chính tắc của elip đi qua điểm M(23;2) và M nhìn hai tiêu điểm của elip dưới một góc vuông có dạng (E):mx2+ny2=1. Tính m−n.
Trả lời:
Tính tổng bán kính của các đường tròn đi qua A(1;1) và tiếp xúc với hai trục tọa độ.
Trả lời:
Một người có 500 triệu đồng gửi tiết kiệm ngân hàng với lãi suất 7,2%/năm. Với giả thiết sau mỗi tháng người đó không rút tiền thì số tiền lãi được nhập vào số tiền ban đầu. Đây được gọi là hình thức lãi kép. Biết số tiền cả vốn lẫn lãi T sau n tháng được tính bởi công thức T=T0(1+r)n, trong đó T0 là số tiền gửi lúc đầu và r là lãi suất của một tháng. Dùng tổng hai số hạng đầu tiên trong khai triển của nhị thức Newton, tính gần đúng số tiền người đó nhận được (cả gốc lẫn lãi) sau 6 tháng.
Trả lời: triệu đồng.
Khi nuôi cá thí nghiệm trong hồ, một nhà sinh học tìm được quy luật rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ cân nặng P(n)=360−10n (đơn vị khối lượng). Hỏi người nuôi phải thả bao nhiêu con cá trên một đơn vị diện tích để trọng lượng cá sau mỗi vụ thu được là nhiều nhất?
Trả lời: con