Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề số 2 (cấu trúc 2025) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho đường hypebol (H) có tiêu điểm F1(−5;0) và độ dài trục ảo B1B2=2b=4. Phương trình chính tắc của (H) là
Tập nghiệm của bất phương trình x2+2≤x−1.
Trong mặt phẳng Oxy, cho các điểm A(2;−1);B(0;4). Phương trình tổng quát của đường thẳng Δ đi qua A và vuông góc với AB là
Chọn ngẫu nhiên 2 thẻ trong 9 thẻ được đánh số từ 1 đến 9. Xác suất để tích hai thẻ lấy ra là một số chẵn bằng
Cho hai đường thẳng Δ1:2x+y+15=0 và Δ2:x−2y−3=0.
(Nhấp vào dòng để chọn đúng / sai)Δ1,Δ2 cắt nhau tại (−427;−421). |
|
Δ1,Δ2 vuông góc với nhau. |
|
Hai đường thẳng Δ1,Δ2 cắt nhau. |
|
Δ1 có vectơ pháp tuyến n1=(2;1),Δ2 có vectơ pháp tuyến n2=(1;−2). |
|
Tủ lạnh nhà bạn Đô có 20 hộp sữa và 15 cái bánh quy, trong đó có 12 hộp sữa có hương dâu và 8 hộp sữa sô cô la, 8 cái bánh quy hương sô cô la và 7 cái bánh quy hương dâu. Bạn Đô đang cần lựa 1 món bánh sô cô la và 1 hộp sữa dâu để ăn bữa chiều thì Đô có bao nhiêu cách chọn?
Trong khai triển (2x+1)5 hệ số của số hạng chứa x5 là
Hàm số y=x2−4x+3 đồng biến trên khoảng nào trong các khoảng dưới đây?
Trong mặt phẳng tọa độ, cho hai đường thẳng d1:2x−y+4=0 và d2:x+y+2=0. Gọi M(a;b) là giao điểm của hai đường thẳng d1 và d2. Khi đó 2a−b bằng
Trong mặt phẳng Oxy, cho điểm M(4;−1) và đường thẳng Δ:2x+3y+8=0. Khoảng cách từ điểm M đến đường thẳng Δ bằng
Phương trình nào sau đây không phải là phương trình đường tròn?
Trong mặt phẳng tọa độ Oxy cho đường tròn (C) có phương trình x2+(y−3)2=1 và điểm M(1;3) thuộc đường tròn (C). Phương trình tiếp tuyến của đường tròn (C) tại điểm M(1;3) là
Hành động nào dưới đây là một phép thử ngẫu nhiên?
Cho đường cong (C):x2+y2+2mx−10y+4m=0.
(Nhấp vào dòng để chọn đúng / sai)Khi m=0 thì (C) là phương trình đường tròn. |
|
Tất cả giá trị của tham số m để phương trình (C) là phương trình đường tròn là [m<−2m>2. |
|
Có 1 giá trị nguyên dương của m để (C) là một phương trình đường tròn có bán kính bằng 5. |
|
Khi m=2 thì (C) là phương trình đường tròn và có bán kính nhỏ nhất. |
|
Cho đường tròn (C):(x−2)2+y2=54 và các đường thẳng d1:x−y=0, d2:x−7y=0. Đường tròn (C′) có tâm I nằm trên đường tròn (C) và tiếp xúc với d1,d2 có bán kính bằng bao nhiêu? (Làm tròn kết quả đến chữ số hàng phần trăm)
Trả lời:
Một elip với bán trục lớn a và bán tiêu cự c tỉ số e=ac được gọi là tâm sai của elip. Quỹ đạo của trái đất quanh mặt trời là một elip (E) trong đó mặt trời là một trong các tiêu điểm.
Biết khoảng cách nhỏ nhất và lớn nhất giữa mặt trời và trái đất lần lượt là 147 triệu km, 152 triệu km. Tính tâm sai của elip (E). (Làm tròn kết quả tới chữ số thập phân thứ ba)
Trả lời:
Thùng I chứa các quả bóng được đánh số 1;2;3;4. Thùng II chứa các quả bóng được đánh số 1;2;3;4. Lấy ra ngẫu nhiên một quả bóng ở mỗi thùng. Tính xác suất để quả bóng lấy ra ở thùng I được đánh số lớn hơn quả bóng lấy ra ở thùng II. (Làm tròn kết quả đến chữ số hàng phần nghìn)
Trả lời:
Bạn An cùng một lúc bắn hai phát súng về đích A và đích B cách nhau 400 m. Biết vận tốc trung bình của viên đạn là 760 m/s. Viên đạn bắn về đích A nhanh hơn viên đạn bắn về đích B là 0,5 giây. Những vị trí mà bạn An đứng để có thể đạt được kết quả bắn tương tự như trên thuộc đường hypebol có phương trình chính tắc dạng mx2−ny2=1. Tính 100m+n.
Trả lời:
Bộ bài tú lơ khơ có 52 quân bài, trong đó gồm 13 tứ quý là A; 2; 3; ...; 10; J; Q và K. Rút ngẫu nhiên ra 4 quân bài.
(Nhấp vào dòng để chọn đúng / sai)Xác suất của biến cố A: "Rút ra được tứ quý Át" là 521. |
|
Xác suất của biến cố B: "Rút ra được hai quân Át, hai quân K" là 27072536. |
|
Xác suất của biến cố C: "Rút ra được ít nhất một quân Át" là 5414538916. |
|
Xác suất của biến cố D: "Rút ra được 4 quân trong đó có đúng 2 quân ở cùng một tứ quý và hai quân còn lại ở hai tứ quý khác nhau" là 27072582368. |
|
Một hộp có 15 quả cầu trắng, 5 quả cầu đen. Xét phép thử chọn ngẫu nhiên 3 quả cầu.
(Nhấp vào dòng để chọn đúng / sai)Không gian mẫu của phép thử là 1140. |
|
Xác suất để chọn được 2 quả cầu trắng là 767. |
|
Xác suất để chọn được ít nhất một quả cầu đen là 228137. |
|
Xác suất để chọn được 3 quả cầu thuộc hai loại khác nhau là 7635. |
|
Một người đang chơi cầu lông có khuynh hướng phát cầu với góc 30∘ (so với mặt đất). Tính khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa), biết cầu rời mặt vợt ở độ cao 0,8 m so với mặt đất và vận tốc xuất phát của cầu là 6 m/s (bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng phẳng đứng và làm tròn kết quả tới hàng phần trăm).
Trả lời: m
Một người có 500 triệu đồng gửi tiết kiệm ngân hàng với lãi suất 7,2%/năm. Với giả thiết sau mỗi tháng người đó không rút tiền thì số tiền lãi được nhập vào số tiền ban đầu. Đây được gọi là hình thức lãi kép. Biết số tiền cả vốn lẫn lãi T sau n tháng được tính bởi công thức T=T0(1+r)n, trong đó T0 là số tiền gửi lúc đầu và r là lãi suất của một tháng. Dùng tổng hai số hạng đầu tiên trong khai triển của nhị thức Newton, tính gần đúng số tiền người đó nhận được (cả gốc lẫn lãi) sau 6 tháng.
Trả lời: triệu đồng.