Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề số 1 (cấu trúc mới 2025) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Phương trình chính tắc của elip đi qua điểm (5;0) và có tiêu cự bằng 25 là
Chọn ngẫu nhiên một số nguyên dương nhỏ hơn 35. Xác suất để số được chọn chia hết cho 5 là
Một tứi đựng 3 viên bi xanh, 4 viên bi đỏ, 5 viên bi vàng và 6 viên bi trắng. Lấy ngẫu nhiên 1 viên bi từ túi, xác suất sao cho viên bi lấy được có màu xanh hoặc màu trắng bằng
Trong mặt phẳng Oxy, gọi (H) là hypebol có một tiêu điểm là F1(−10;0) và đi qua điểm A(4;−2).
(Nhấp vào dòng để chọn đúng / sai)Tiêu điểm còn lại của hypebol (H) là F2(10;0). |
|
Hypebol (H) có tiêu cự bằng 10. |
|
Giá trị tuyệt đối của hiệu các khoảng cách từ mỗi điểm thuộc hypebol (H)đến hai tiêu điểm bằng 42. |
|
Phương trình chính tắc của hypebol (H) là 8x2−2y2=1. |
|
Tỉ lệ trẻ suy dinh dưỡng (tính theo cân nặng ứng với độ tuổi) của 10 tỉnh thuộc Đồng bằng sông Hồng được cho như sau:
5,5; 13,8; 10,2; 12,2; 11,0; 7,4; 11,4; 13,11; 2,5; 13,4
(Theo Tổng cục thống kê)
(Nhấp vào dòng để chọn đúng / sai)Khoảng biến thiên của mẫu số liệu là R=8,3. |
|
Trung vị của mẫu số liệu là Q2=9,2. |
|
Số trung bình của mẫu số liệu là x=11,05. |
|
Độ lệch chuẩn của mẫu số liệu là s≈2,57. |
|
Cho hypebol (H):16x2−9y2=1. Hiệu các khoảng cách từ mỗi điểm nằm trên (H) đến hai tiêu điểm có giá trị tuyệt đối bằng
Hùng muốn qua nhà Huy để rủ Huy cùng đến chơi nhà Nam. Từ nhà Hùng đến nhà Huy có 5 con đường đi, từ nhà Huy tới nhà Nam có 8 con đường đi. Hùng có bao nhiêu cách chọn đường đi đến nhà Nam (có đi qua nhà Huy)?
Một thùng giấy trong đó có 7 hộp đựng bút màu khác nhau. Số cách chọn hai hộp từ 7 hộp đựng bút trên là
Hệ số của x3 trong khai triển Newton biểu thức (2x+1)5 bằng
Trong mặt phẳng Oxy, góc giữa hai đường thẳng Δ1:{x=2+3ty=4−2t và Δ2:{x=−3+2ty=1+3t bằng
Cho đường tròn (C) có phương trình 3x2+3y2−6x+12y−12=0. Biết (C) có tâm I(a ; b) và bán kính R thì a+b+R bằng
Cho số gần đúng a=1000 với sai số tuyệt đối Δa=20. Sai số tương đối của a xấp xỉ
Khối lượng cơ thể lúc trưởng thành của 10 con chim được ghi lại ở bảng sau (đơn vị: gam).
165 | 150 | 155 | 165 | 170 |
165 | 158 | 155 | 180 | 160 |
Mốt của mẫu số liệu trên là
Gieo một đồng xu liên tiếp cho đến khi xuất hiện mặt sấp (S) hoặc cả bốn lần đầu tiên đều xuất hiện mặt ngửa (N) thì dừng lại. Không gian mẫu của phép thử là
Trong mặt phẳng với hệ trục tọa độ Oxy, cho các điểm M(1;−2), N(−3;2) và P(5;0).
(Nhấp vào dòng để chọn đúng / sai)Nếu đường tròn có tâm là điểm M và có đường kính bằng 2 thì đường tròn có phương trình là (x−1)2+(y+2)2=4. |
|
Nếu đường tròn có tâm là điểm N và có đường kính bằng 6 thì đường tròn có phương trình là (x+3)2+(y−2)2=9. |
|
Nếu đường tròn có tâm là điểm P và có đường kính bằng độ dài đoạn MN thì đường tròn có phương trình là (x−5)2+y2=8. |
|
Nếu đường tròn có đường kính là đoạn NP thì đường tròn có phương trình là (x−1)2+(y−1)2=17. |
|
Cho hai đường thẳng song song d1 và d2. Trên d1 lấy 17 điểm phân biệt, trên d2 lấy 20 điểm phân biệt. Tính số tam giác có các đỉnh là 3 điểm trong số 37 điểm đã chọn trên d1 và d2.
Trả lời:
Cho đường tròn (C):(x−2)2+y2=54 và các đường thẳng d1:x−y=0, d2:x−7y=0. Đường tròn (C′) có tâm I nằm trên đường tròn (C) và tiếp xúc với d1,d2 có bán kính bằng bao nhiêu? (Làm tròn kết quả đến chữ số hàng phần trăm)
Trả lời:
Một nhà vòm chứa máy bay có mặt cắt hình nửa elip cao 8 m, rộng 20 m. Tính khoảng cách theo phương thẳng đứng từ một điểm cách chân tường 5 m lên đến nóc nhà vòm. (Làm tròn đến chữ số hàng phần trăm)
Trả lời: m.
Trong tủ giày có 4 đôi giày khác loại. Bạn Đô lấy ra ngẫu nhiên 2 chiếc. Biết xác suất để lấy ra được một đôi giày hoàn chỉnh là x1. Tìm x.
Trả lời:
Trong một dịp quay xổ số, có ba loại giải thưởng: 1 000 000 đồng, 500 000 đồng, 100 000 đồng. Nơi bán có 100 tờ vé số, trong đó có 1 vé trúng thưởng 1 000 000 đồng, 5 vé trúng thưởng 500 000 đồng, 10 vé trúng thưởng 100 000 đồng. Một người mua ngẫu nhiên 3 vé. Tính xác suất của biến cố "Người mua đó trúng thưởng ít nhất 300 000 đồng". (Làm tròn kết quả tới chữ số thập phân thứ ba)
Trả lời:
Một cái tháp làm nguội của một nhà máy có mặt cắt là hình hypebol có phương trình 282x2−422y2=1.
Biết chiều cao của tháp là 150 m và khoảng cách từ nóc tháp đến đến tâm đối xứng của hypebol bằng 32 lần khoảng cách từ tâm đối xứng đến đáy. Tính bán kính đáy của tháp. (Làm tròn đến chữ số thập phân thứ hai)
Trả lời: m.
Một hộp có 15 quả cầu trắng, 5 quả cầu đen. Xét phép thử chọn ngẫu nhiên 3 quả cầu.
(Nhấp vào dòng để chọn đúng / sai)Không gian mẫu của phép thử là 1140. |
|
Xác suất để chọn được 2 quả cầu trắng là 767. |
|
Xác suất để chọn được ít nhất một quả cầu đen là 228137. |
|
Xác suất để chọn được 3 quả cầu thuộc hai loại khác nhau là 7635. |
|