Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề số 1 (cấu trúc mới 2025) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Phương trình chính tắc của elip đi qua điểm A(0;−4) và có một tiêu điểm F2(3;0) là
Một lớp có 42 học sinh trong đó có 20 bạn nam. Trong lớp có 4 bạn nam và 3 bạn nữ thuận tay trái. Chọn ngẫu nhiên hai bạn trong lớp, xác suất sao cho chọn được 1 bạn nữ không thuận tay trái và 1 bạn nam thuận tay trái bằng
Một chiếc hộp đựng 7 viên bi màu xanh, 6 viên bi màu đen, 5 viên bi màu đỏ, 4 viên bi màu trắng. Chọn ngẫu nhiên ra 4 viên bi. Gọi A là biến cố "Lấy được ít nhất 2 viên bi cùng màu". Số phần tử của biến cố A là
Trong mặt phẳng Oxy, gọi (H) là hypebol có một tiêu điểm là F1(−10;0) và đi qua điểm A(4;−2).
(Nhấp vào dòng để chọn đúng / sai)Tiêu điểm còn lại của hypebol (H) là F2(10;0). |
|
Hypebol (H) có tiêu cự bằng 10. |
|
Giá trị tuyệt đối của hiệu các khoảng cách từ mỗi điểm thuộc hypebol (H)đến hai tiêu điểm bằng 42. |
|
Phương trình chính tắc của hypebol (H) là 8x2−2y2=1. |
|
Mẫu số liệu sau đây cho biết chiều cao của 10 học sinh (đơn vị cm):
165 | 155 | 160 | 145 | 157 |
162 | 148 | 170 | 172 | 152 |
Chiều cao trung bình của 10 học sinh là 157,6. |
|
Khoảng biến thiên của mẫu số liệu là 27. |
|
Khoảng tứ phân vị của mẫu số liệu là 13. |
|
Phương sai của mẫu số liệu trên nhỏ hơn 64. |
|
Cho hypebol (H):16x2−9y2=1. Hiệu các khoảng cách từ mỗi điểm nằm trên (H) đến hai tiêu điểm có giá trị tuyệt đối bằng
Một người có 5 cái quần khác nhau, 7 cái áo khác nhau, 9 chiếc cà vạt khác nhau. Để chọn một cái quần hoặc một cái áo hoặc một cái cà vạt thì số cách chọn khác nhau là
Một thùng giấy trong đó có 7 hộp đựng bút màu khác nhau. Số cách chọn hai hộp từ 7 hộp đựng bút trên là
Hệ số của x3 trong khai triển Newton biểu thức (2x+1)5 bằng
Trong mặt phẳng Oxy, góc giữa hai đường thẳng Δ1:4x+2y−1=0 và Δ2:x+3y−5=0 bằng
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C):x2+y2−2x+6y−1=0. Tâm của (C) có tọa độ là
Cho số gần đúng a=1000 với sai số tuyệt đối Δa=20. Sai số tương đối của a xấp xỉ
Số trung bình của mẫu số liệu 23;41;71;29;48;45;72;41 là
Trong các thí nghiệm sau, thí nghiệm nào không phải là phép thử ngẫu nhiên?
Trong hệ trục tọa độ Oxy, cho đường tròn (C) tâm I(1;2) và cắt đường thẳng Δ:3x+4y−6=0 tại hai điểm A,B sao cho SIAB=4.
(Nhấp vào dòng để chọn đúng / sai)Khoảng cách từ tâm I đến đường thẳng Δ bằng 1. |
|
Bán kính đường tròn (C) nhỏ hơn 4. |
|
Phương trình đường tròn (C):x2+y2−2x−4y+12=0. |
|
Điểm O nằm trên đường tròn (C). |
|
Có bao nhiêu số tự nhiên gồm bảy chữ số được chọn từ các chữ số 1, 2, 3, 4, 5 sao cho chữ số 2 có mặt đúng hai lần, chữ số 3 có mặt đúng ba lần và các chữ số còn lại có mặt không quá một lần?
Trả lời:
Trong mặt phẳng toạ độ Oxy, vị trí của một chất điểm K tại thời điểm t (với 0≤t≤180) có toạ độ là (3+2cost∘;4+2sint∘). Biết quỹ đạo chuyển động của chất điểm K là đường tròn tâm I(a;b), bán kính R. Tính a+b+R.
Trả lời:
Phương trình chính tắc của elip đi qua điểm M(23;2) và M nhìn hai tiêu điểm của elip dưới một góc vuông có dạng (E):mx2+ny2=1. Tính m−n.
Trả lời:
Một lô hàng có 14 sản phẩm, trong đó có đúng 2 phế phẩm. Chọn ngẫu nhiên 8 sản phẩm trong lô hàng đó. Tính xác suất của biến cố "Trong 8 sản phẩm được chọn có không quá 1 phế phẩm". (Làm tròn kết quả đến chữ số thập phân thứ hai)
Trả lời:
Thùng I chứa các quả bóng được đánh số 1;2;3;4. Thùng II chứa các quả bóng được đánh số 1;2;3;4. Lấy ra ngẫu nhiên một quả bóng ở mỗi thùng. Tính xác suất để quả bóng lấy ra ở thùng I được đánh số lớn hơn quả bóng lấy ra ở thùng II. (Làm tròn kết quả đến chữ số hàng phần nghìn)
Trả lời:
Để chụp toàn cảnh, ta có thể sử dụng một gương hypebol. Máy ảnh được hướng về phía đỉnh của gương và tâm quang học của máy ảnh được đặt tại một tiêu điểm của gương (xem hình).
Tìm khoảng cách từ quang tâm của máy ảnh đến đỉnh của gương, biết rằng phương trình cho mặt cắt của gương là 25x2−16y2=1. (Làm tròn đến chữ số thập phân thứ hai)
Trả lời:
Một hộp có 15 quả cầu trắng, 5 quả cầu đen. Xét phép thử chọn ngẫu nhiên 3 quả cầu.
(Nhấp vào dòng để chọn đúng / sai)Không gian mẫu của phép thử là 1140. |
|
Xác suất để chọn được 2 quả cầu trắng là 767. |
|
Xác suất để chọn được ít nhất một quả cầu đen là 228137. |
|
Xác suất để chọn được 3 quả cầu thuộc hai loại khác nhau là 7635. |
|