Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Hàm số nào sau đây luôn nghịch biến trên từng khoảng xác định của nó?
Cho hàm số y=f(x) có đạo hàm f′(x)=x−1,∀x∈R. Số điểm cực trị của hàm số đã cho là
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ.
Điểm cực tiểu của đồ thị hàm số là
Cho hàm số y=f(x) có đồ thị trên đoạn [−1;1] là đường cong như hình vẽ.
Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của f(x) trên đoạn [−1;1]. Khi đó biểu thức M−m bằng
Đồ thị hàm số y=x−21−x2 có bao nhiêu đường tiệm cận?
Hình vẽ trên là bảng biến thiên của hàm số nào sau đây?
Phương trình tiếp tuyến của đồ thị hàm số y=x3−3x2+1 tại điểm A(3;1) là
Số giao điểm của đồ thị hàm số y=−2x4+x2+23 và trục hoành là
Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y=f(x)=x+x4 trên đoạn [1;3] bằng
Tâm đối xứng của đồ thị hàm số y=x+23x−7 có tọa độ
Giá trị nhỏ nhất của hàm số y=x−1+x−14 trên khoảng (1;+∞) là
Cho hàm số y=x+mx+5 với m là tham số.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Tập xác định của hàm số là R. |
|
b) Với m=2 hàm số nghịch biến trên từng khoảng xác định. |
|
c) Hàm số đồng biến trên từng khoảng xác định khi và chỉ khi m>5. |
|
d) Hàm số đồng biến trên khoảng (−∞;−8) khi và chỉ khi m∈[5;8]. |
|
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau.
a) Hàm số có giá trị cực đại bằng 3. |
|
b) Hàm số có hai điểm cực trị. |
|
c) Hàm số có giá trị lớn nhất bằng 1, nhỏ nhất bằng −31. |
|
d) Đồ thị hàm số không cắt trục hoành. |
|
Cho hàm số y=f(x)=x+3x2+2x+1 có đồ thị là (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) y=f(x)=x−1+x+34,∀x∈(−∞;−3)∪(−3;+∞). |
|
b) Đồ thị (C) không có tiệm cận ngang. |
|
c) Đồ thị (C) có tiệm cận đứng là đường thẳng x=3. |
|
d) Đồ thị (C) có tiệm cận xiên là đường thẳng y=ax+b. Khi đó a2+b2=2. |
|
Trong 200 gam dung dịch muối nồng độ 15%, giả sử thêm vào dung dịch x (gam) muối tinh khiết và được dung dịch có nồng độ f(x)%.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số f(x)=x+30100(x+200). |
|
b) Đạo hàm của hàm số luôn nhận giá trị âm trên khoảng (0;+∞). |
|
c) Thêm càng nhiều gam muối tinh khiết thì nồng độ phần trăm càng tăng và không vượt quá 100%. |
|
d) Tiệm cận ngang của đồ thị hàm số y=f(x) là y=100. |
|
Cho hàm số y=x2+1mx2+(m+2)x+5. Gọi S là tập hợp các giá trị của m sao cho đồ thị hàm số đã cho có đúng hai điểm cực trị và đường thẳng nối hai điểm cực trị của đồ thị hàm số cắt hai trục tọa độ tạo thành một tam giác có diện tích bằng 425. Tính tổng giá trị các phần tử thuộc tập S.
Trả lời:
Một bể chứa 1000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ 15 gam muối cho mỗi lít nước với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Phương trình tiệm cận ngang của đồ thị hàm số y=f(t) là y=a. Tính a.
Trả lời:
Xét một chất điểm chuyển động dọc theo trục Ox. Toạ độ của chất điểm tại thời điểm t được xác định bởi hàm số x(t)=t3−6t2+9t với t≥0. Khi đó x′(t) là vận tốc của chất điểm tại thời điểm t, kí hiệu v(t);v′(t) là gia tốc chuyển động của chất điểm tại thời điểm t. Vận tốc của chất điểm giảm dần tới thời điểm ta lại bắt đầu tăng dần. Tính ta.
Trả lời:
Cho một tấm nhôm hình vuông có cạnh 24 cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gấp tấm nhôm lại như hình vẽ dưới đây để được một khối hộp chữ nhật không nắp.
Tìm x (đơn vị cm) sao cho thể tích khối hộp lớn nhất.
Trả lời:
Độ giảm huyết áp của một bệnh nhân được xác định bởi công thức G(x)=0,024x2(30−x), trong đó x là liều lượng thuốc tiêm cho bệnh nhân cao huyết áp (x được tính bằng mg). Tìm lượng thuốc x tiêm cho bệnh nhân cao huyết áp để huyết áp giảm nhiều nhất.
Trả lời:
Cho hàm số y=f(x) có đồ thị như hình bên dưới.
Phương trình f′[f(x)−2]=0 có bao nhiêu nghiệm?
Trả lời: