Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Với góc α có điểm biểu diễn ở góc phần tư thứ tư của đường tròn lượng giác, kết quả nào sau đây đúng?
Trong mặt phẳng định hướng cho ba tia Ou,Ov,Ox. Xét các hệ thức sau:
i. (Ou,Ov)=(Ou,Ox)+(Ox,Ov)+k2π,k∈Z
ii. (Ou,Ov)=(Ox,Ov)+(Ox,Ou)+k2π,k∈Z
iii. (Ou,Ov)=(Ov,Ox)+(Ox,Ou)+k2π,k∈Z
Hệ thức nào là hệ thức Sa- lơ về số đo các góc lượng giác?
Giá trị lớn nhất của hàm số y=3sinx là
Hàm số nào dưới đây có đồ thị là đường cong như hình vẽ?
Mệnh đề nào sau đây sai?
Trong các dãy số có công thức tổng quát sau, dãy số nào là cấp số cộng?
Cho cấp số cộng (un) có u1=3 và u2=−1. Công sai của cấp số cộng đó bằng
Cho cấp số nhân có số hạng đầu u1=3, công bội q=2. Tổng 5 số hạng đầu tiên S5 của cấp số nhân là
Cho cosα=21 và 23π<α<2π. Khi đó sinα bằng
Phương trình 3sin(2x+6π)−cos(2x+6π)=1 tương đương với phương trình nào sau đây?
Tập nghiệm S của phương trình cosx.sin(2x−3π)=0 là
Cho dãy số (un) biết un=2n3n−1. Mệnh đề nào sau đây đúng?
Cho biết cos2α=−41 và π<α<23π.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) sinα<0,cosα<0. |
|
b) sinα=410. |
|
c) cosα=46. |
|
d) cotα=515. |
|
Cho phương trình lượng giác 3−3tan(2x−3π)=0.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình có nghiệm x=6π+2kπ,k∈Z. |
|
b) Phương trình có nghiệm âm lớn nhất bằng −3π. |
|
c) Khi 4−π<x<32π thì phương trình có ba nghiệm. |
|
d) Tổng các nghiệm của phương trình trong khoảng (4−π;32π) bằng 6π. |
|
Trong hội chợ tết, một công ty sữa muốn xếp 1 000 hộp sữa theo thứ tự từ trên xuống dưới như sau: Hàng thứ nhất có 1 hộp sữa, hàng thứ hai có 3 hộp sữa, hàng thứ ba có 5 hộp sữa,... cứ như thế, số lượng hộp sữa của hàng sau lớn hơn số lượng hộp sữa của hàng trước nó là 2 hộp sữa (mô hình như hình dưới).
a) Gọi un là số hộp sữa ở hàng thứ n thì (un) là một cấp số cộng có số hạng đầu u1=1 và công sai d=2. |
|
b) Số hộp sữa của hàng thứ 10 là 20 hộp sữa. |
|
c) Để xếp được 20 hàng thì cần 400 hộp sữa. |
|
d) Hàng cuối cùng có 900 hộp sữa. |
|
Cho phương trình lượng giác tan(2x−15∘)=1 (*).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình (*) có nghiệm x=30∘+k90∘,(k∈Z). |
|
b) Phương trình có nghiệm âm lớn nhất bằng −30∘. |
|
c) Tổng các nghiệm của phương trình trong khoảng (−180∘;90∘) bằng 180∘. |
|
d) Trong khoảng (−180∘;90∘) phương trình có nghiệm lớn nhất bằng 60∘. |
|
Trong môn cầu lông, khi phát cầu, người chơi cần đánh cầu qua khỏi lưới sang phía sân đối phương và không được để cho cầu rơi ngoài biên. Trong mặt phẳng toạ độ Oxy, chọn điểm có tọa độ (O;y0) là điểm xuất phát thì phương trình quỹ đạo của cầu lông khi rời khỏi mặt vợt là: y=2.v02.cos2α−g.x2+tan(α).x+y0; trong đó: g là gia tốc trọng trường (thường được chọn là 9,8 m/s2; α là góc phát cầu (so với phương ngang của mặt đất); v0 là vận tốc ban đầu của cầu; y0 là khoảng cách từ vị trí phát cầu đến mặt đất. Quỹ đạo chuyển động của quả cầu lông là một parabol như hình vẽ.
Một người chơi cầu lông đang đứng khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa) là 6,68 m. Người chơi đó đã phát cầu với góc tối đa khoảng bao nhiêu độ so với mặt đất? (biết cầu rời mặt vợt ở độ cao 0,7 m so với mặt đất và vận tốc xuất phát của cầu là 8 m/s, bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng thẳng đứng, làm tròn kết quả tới hàng đơn vị).
Trả lời:
Nguời ta thiết kế một cái tháp gồm 10 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích bề mặt trên của tầng ngay bên dưới và diện tích bề mặt của tầng 1 bằng nửa diện tích bề mặt đế tháp. Biết diện tích bề mặt đế tháp là 12288 m2, tính diện tích bề mặt trên cùng của tháp (đơn vị mét vuông).
Trả lời:
Sinh nhật bạn của An vào ngày 1 tháng năm. An muốn mua một món quà sinh nhật cho bạn thân của mình nên quyết định bỏ ống heo 1000 đồng vào ngày 01 tháng 01 năm 2016, sau đó cứ liên tục ngày sau hơn ngày trước 1000 đồng. Đến ngay trước ngày sinh nhật của bạn thân, An đã tích lũy được bao nhiêu tiền? (ghi kết quả dưới dạng số thập phân, đơn vị nghìn đồng)
Trả lời:
Tìm số nguyên m nhỏ nhất để dãy số (un) với un=n+1mn+1 là dãy số tăng.
Trả lời:
Gọi n là số nghiệm của phương trình sin(2x+30∘)=23 trên khoảng (−180∘;180∘). Tìm n.
Trả lời:
Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4000000 đồng vào một ngày cố định của tháng ở ngân hàng M với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Tính A, đơn vị triệu đồng, làm tròn tới hàng đơn vị.
Trả lời: