Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì II (đề số 1) SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Khẳng định nào sau đây đúng?
Họ các nguyên hàm của hàm số f(x)=5x4−6x2+1 là
Họ các nguyên hàm ∫x−1x2−x+1dx bằng
Cho hàm số f(x) liên tục trên R, thỏa mãn 0∫3f(x)dx=6 và 3∫10f(x)dx=3. Giá trị của 0∫10f(x)dx bằng
Diện tích S hình phẳng giới hạn bởi các đường y=2x2, y=−1, x=0 và x=1 là
Trong không gian Oxyz, mặt phẳng có phương trình nào dưới đây nhận n=(3;1;−7) là một vectơ pháp tuyến?
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (α) đi qua điểm A(2;1;1) và vuông góc với trục tung là
Giá trị của tích phân I=−1∫12x−2−xdx bằng
Biết 0∫4πtan2xdx=a−bπ, (a,b∈Z). Giá trị của biểu thức S=a+b2 bằng
Cho tam giác vuông OAB có cạnh OA=a nằm trên trục Ox và AOB=3π. Khối tròn xoay sinh ra khi quay miền tam giác OAB quanh trục Ox có thể tích là
Trong không gian Oxyz, cho mặt phẳng (P) song song và cách mặt phẳng (Q):x+2y+2z−3=0 một khoảng bằng 1 và (P) không qua O. Phương trình của mặt phẳng (P) là
Cho hàm số f(x)=x2+sinx+1, biết F(x) là một nguyên hàm của hàm số f(x) và F(0)=1. Khi đó F(x) bằng
Cho hàm số y=f(x) có đạo hàm là f′(x)=6x+sinx,∀x∈R. F(x) là nguyên hàm của f(x) thỏa mãn F(0)=3.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) f(x)=3x2−cosx+C với C∈R. |
|
b) Khi f(0)=0 thì f(x)=3x2−cosx−1. |
|
c) Khi f(0)=0 thì F(x)=x3−sinx. |
|
d) Khi f(0)=0 thì F(π)=π3+π+3. |
|
Cho hàm số y=f(x) liên tục trên đoạn [0;8] và có đồ thị như hình vẽ:
a) S1=∫03f(x)dx. |
|
b) S2+S3=∫38f(x)dx. |
|
c) S1−S2=−∫05f(x)dx. |
|
d) ∫08f(x)dx>∫58f(x)dx. |
|
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;3;−1),B(4;1;0),C(4;7;3).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Vectơ n=[AB,AC] là một vectơ pháp tuyến của mặt phẳng ABC. |
|
b) Độ dài các cạnh tam giác ABC lần lượt là AB=3,AC=6,BC=4. |
|
c) Tọa độ chân đường phân giác của BAC xuống BC là E(4;3;1). |
|
d) Mặt phẳng đi qua điểm A, tâm đường tròn nội tiếp tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình (P):x−4y−z−9=0. |
|
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;1;3),B(−1;3;2),C(−1;2;3).
a) Ba điểm A,B,C không thẳng hàng. |
|
b) AB=3KC với K(2;−2;2). |
|
c) Phương trình mặt phẳng (ABC) là x+2y+2z+9=0. |
|
d) Khoảng cách từ M(−4;4;0) đến (ABC) lớn hơn khoảng cách từ N(4;2;1) đến (ABC). |
|
Chủ một trung tâm thương mại muốn cho thuê một số gian hàng như nhau. Người đó muốn tăng giá cho thuê của mỗi gian hàng thêm x (triệu đồng), (x≥0). Tốc độ thay đổi doanh thu từ các gian hàng đó được biểu diễn bởi hàm số T′(x)=−20x+300, trong đó T′(x) tính bằng triệu đồng. Biết rằng nếu người đó tăng giá thuê cho mỗi gian hàng thêm 10 triệu đồng thì doanh thu là 12000 triệu đồng. Giá trị của x bằng bao nhiêu để người đó có doanh thu là cao nhất?
Trả lời:
Một vật chuyển động trong 3 giờ với vận tốc v(km/h) phụ thuộc vào thời gian t(h) có đồ thị vận tốc như hình bên. Trong thời gian 1 giờ kể từ khi bắt đầu chuyển động, đồ thị đó là một phần của đường parabol có đỉnh I(2;9) và trục đối xứng song song với trục tung, khoảng thời gian còn lại đồ thị là một đoạn thẳng song song với trục hoành. Tính quãng đường s (km) mà vật chuyển động được trong 3 giờ đó (kết quả làm tròn đến hàng phần mười).
Một chiếc lều vải du lịch dạng hình cong như hình bên (lều bánh ú). Khung chính bao gồm đáy là hình vuông cạnh 2m và hai xương dây a, b nằm trên các đường parabol đỉnh S. Biết chiều cao của lều là SO=135cm, O là tâm của đáy. Thể tích chiếc lều bằng bao nhiêu (coi như độ dày của vải phủ và khung chính không đáng kể)?
Trả lời:
Gọi V là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường y=x,y=0 và x=4 quanh trục Ox. Đường thẳng x=a(0<a<4) cắt đồ thị hàm số y=x tại M (hình vẽ). Gọi V1 là thể tích khối tròn xoay tạo thành khi quay tam giác OMH quanh trục Ox, trong đó H(4;0). Tìm a sao cho V=2V1.
Trả lời:
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng Δ:3x−1=−2y+2=1z−3 và mặt phẳng (P):x+y−z−1=0. Mặt phẳng (Q) đối xứng với (P) qua Δ có phương trình là ax+by+cz+d=0, trong đó a, b, c, d nguyên dương; a và b nguyên tố cùng nhau. Tính a+b+c+d.
Trả lời:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:⎩⎨⎧x=1+ty=−tz=1+2t và hai mặt phẳng (α):x+y−z−8=0, (β):x+y−z+2=0. Gọi Δ1⊂(α), Δ2⊂(β) là hai đường thẳng cùng vuông góc với d lần lượt tại A và B. Khoảng cách từ gốc tọa độ O đến mặt phẳng (P) chứa Δ1 và Δ2 bằng bao nhiêu? (làm tròn kết quả đến chữ số thập phân thứ hai)
Trả lời: