Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
Hàm số y=f(x) đồng biến trên khoảng nào dưới đây?
Cho hàm số y=f(x) có đạo hàm f′(x)=x2(x2−1). Điểm cực tiểu của hàm số y=f(x) là
Hàm số nào dưới đây có bảng biến thiên như hình vẽ?
Trong không gian Oxyz, cho hai vectơ u=(1;1;0) và v=(2;0;−1). Độ dài ∣u+2v∣ bằng
Bảng sau thống kê cân nặng của 30 quả đu đủ được lựa chọn ngẫu nhiên sau khi thu hoạch ở vườn nhà Lan.
Cân nặng (g) | Số quả bưởi |
[750;800) | 5 |
[800;850) | 10 |
[850;900) | 5 |
[900;950) | 8 |
[950;1000) | 2 |
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là
Giá trị của tham số m để giá trị nhỏ nhất của hàm số y=2x3−3x2+m trên đoạn [0;5] bằng 5 là
Giá trị lớn nhất của hàm số y=x4−2x2+3 trên đoạn [0;3] là
Một công ty sản xuất máy tính đã xác định được rằng, tính trung bình một nhân viên có thể lắp ráp được N(x)=x+450x, (x≥0) bộ phận mỗi ngày sau x ngày đào tạo. Coi y=N(x) là một hàm số xác định trên [0;+∞), khi đó tiệm cận ngang của đồ thị hàm số đó là
Trong mặt phẳng tọa độ Oxy, gọi (C) là đồ thị hàm số y=x−2x−1. Phương trình tiếp tuyến của (C) tại giao điểm của đồ thị (C) với trục hoành là
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;−1), B(2;−1;3), C(−2;3;3). Điểm D(a;b;c) là đỉnh thứ tư của hình bình hành ABCD, khi đó P=a2+b2−c2 có giá trị bằng
Biểu đồ dưới đây biểu diễn số lượt khách hàng đặt bàn qua hình thức trực tuyến mỗi ngày trong quý III năm 2022 của một nhà hàng. Cột thứ nhất biểu diễn số ngày có từ 1 đến dưới 6 lượt đặt bàn, cột thứ hai biểu diễn số ngày có từ 6 đến dưới 11 lượt đặt bàn, ...
Khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên là
Cho biểu đồ thống kê chiều cao của học sinh nữ lớp 12A:
Phương sai của mẫu số liệu trên (làm tròn đến chữ số hàng phần trăm) bằng
Chi phí nhiên liệu của một chiếc tàu chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng mỗi giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v=10 km/h thì phần thứ hai bằng 30 nghìn đồng mỗi giờ.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Khi vận tốc v=10 (km/h) thì chi phí nguyên liệu cho phần thứ nhất trên mỗi km đường sông là 48000 đồng. |
|
b) Hàm số xác định tổng chi phí nguyên liệu trên mỗi km đường sông với vận tốc x km/h là f(x)=x480+0,03x3. |
|
c) Khi vận tốc v=30 km/h thì tổng chi phí nguyên liệu trên mỗi km đường sông là 43000 đồng. |
|
d) Vận tốc của tàu để tổng chi phí nguyên liệu trên mỗi km đường sông nhỏ nhất là v=20 km/h. |
|
Cho hàm số y=x−2−x2+4x+3+m có đồ thị (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Khi m=0, tiệm cận đứng của đồ thị hàm số là x=2. |
|
b) Khi m=0, tọa độ giao điểm của tiệm cận đứng đồ thị và đường thẳng x−y−1=0 thuộc parabol y=x2. |
|
c) Khi m=0, lấy M là điểm bất kì trên đồ thị (C), gọi d1 là khoảng cách từ M đến đường tiệm cận đứng, gọi d2 là khoảng cách từ M đến đường thẳng y=−x+2. Khi đó, tích d1.d2=7. |
|
d) Gọi S là tập hợp các giá trị nguyên dương của m để đồ thị hàm số không có tiệm cận đứng. Số phần tử của S là 1. |
|
Cho tứ diện OABC có các cạnh OA,OB,OC đôi một vuông góc với nhau và OA=OB=OC=1.
a) OA.OB=0. |
|
b) OA.OB.OC=0. |
|
c) (BA,BO)=60∘. |
|
d) AB.BC=−1. |
|
Bảng sau thống kê thời gian (đơn vị: phút) tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình và bạn An.
Thời gian (phút) |
Số ngày tập của Bình |
Số ngày tập của An |
[15;20) | 5 | 5 |
[20;25) | 10 | 5 |
[25;30) | 10 | 15 |
[30;35) | 2 | 3 |
[35;40) | 1 | 0 |
a) Khoảng biến thiên của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 20 . |
|
b) Khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình là 28 . |
|
c) Khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 22. |
|
d) Dựa vào khoảng tứ phân vị của hai mẫu số liệu trên thì thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình phân tán hơn bạn An. |
|
An tìm hiểu hàm lượng chất béo (đơn vị: g) có trong 100 g mỗi loại thực phẩm. Sau khi thu thập dữ liệu về 60 loại thực phẩm, An lập được bảng thống kê.
Hàm lượng chất béo (g) | Tần số |
[2;6) | 2 |
[6;10) | 6 |
[10;14) | 10 |
[14;18) | 13 |
[18;22) | 16 |
[22;26) | 13 |
Tính khoảng tứ phân vị của mẫu số liệu trên. (Làm tròn đến chữ số thập phân thứ nhất)
Trả lời: .
Cho hàm số y=f(x) thỏa mãn f(x)=4 và có bảng biến thiên như hình dưới:
Có bao nhiêu giá trị nguyên của tham số m để đường thẳng y=m cắt đồ thị hàm số y=f(∣x∣) tại 6 điểm phân biệt?
Trả lời:
Một cửa hàng kinh doanh rau tươi ước tính doanh thu bởi hàm số f(x)=x2−29000x+1000100000 (đồng) và tiền lãi thu được là g(x)=1000x+100000 (đồng) với x (đồng) là giá bán cho mỗi kg rau tươi. Biết doanh thu bằng tổng tiền lãi và tiền vốn. Tìm giá bán mỗi kg rau tươi (đơn vị nghìn đồng) sao cho cửa hàng phải bỏ vốn ra ít nhất.
Trả lời:
Trong hóa học cấu tạo của phân tử ammoniac (NH3) có dạng hình chóp tam giác đều mà đỉnh là nguyên tử nitrogen (N) và đáy là tam giác H1H2H3 với H1,H2,H3 là vị trí của ba nguyên tử hydrogen (H). Góc tạo bởi liên kết H−N−H, có hai cạnh là hai đoạn thẳng nối N với hai trong ba điểm H1,H2,H3 (chẳng hạn như H1NH2) , được gọi là góc liên kết của phân tử NH3. Góc này xấp xỉ 120∘. Trong không gian Oxyz, cho một phân tử NH3 được biểu diễn bởi hình chóp tam giác đều N.H1H2H3 với O là tâm của đáy. Nguyên tử nitrogen được biểu diễn bởi điểm N thuộc trục Oz, ba nguyên tử hydrogen ở các vị trị H1,H2,H3 trong đó H1(0;−3;0) và H2H3 song song với trục Ox. Tính khoảng cách giữa nguyên tử nitrogen với mỗi nguyên tử hydrogen. (làm tròn kết quả đến hàng phần trăm)
Trả lời:
Cho hình hộp ABCD.A′B′C′D′. Một đường thẳng Δ cắt các đường thẳng AA′,BC,C′D′ lần lượt tại M,N,P sao cho NM=2NP. Tính MA′MA.
Trả lời:
Người ta muốn làm một cái bể dạng hình hộp chữ nhật không nắp (như hình vẽ) có thể tích bằng 1 m3. Chiều cao của bể là 5dm, các kích thước khác là x m, y m với x>0 và y>0. Diện tích toàn phần của bể (không kể nắp) là hàm số S(x) trên khoảng (0;+∞).
Đường tiệm cận xiên của đồ thị hàm số S(x) là đường thẳng y=ax+b. Tính P=a2+b2.
Trả lời: