Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong không gian Oxyz, cho hai vectơ u=(1;1;0) và v=(2;0;−1). Độ dài ∣u+2v∣ bằng
Trong không gian Oxyz, cho hai điểm A(2;3;−1) và B(−4;1;9). Trung điểm I của đoạn thẳng AB có tọa độ là
Bạn Long rất thích nhảy hiện đại. Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn Long được thống kê lại ở bảng sau:
Thời gian (phút) | Số ngày |
[20;25) | 4 |
[25;30) | 3 |
[30;35) | 5 |
[35;40) | 1 |
[40;45) | 2 |
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là
Giá trị lớn nhất của hàm số y=x3−2x2−7x+1 trên đoạn [−2;1] là
Cho hàm số y=f(x) có bảng biến thiên như sau
Hàm số có bảng biến thiên như trên là
Cho hàm số y=x−1x2−x+1 có đồ thị (C). Biết tiếp tuyến song song với đường thẳng Δ:3x−4y+1=0, khi đó, phương trình tiếp tuyến của (C) là
Một máy bay đang cất cánh từ phi trường. Với hệ toạ độ Oxyz được thiết lập như hình vẽ dưới, cho biết M là vị trí của máy bay, OM=14,NOB=32∘,MOC=65∘.
Tọa độ điểm M là
Trong không gian cho ba vectơ a,b,c không đồng phẳng. Xét các vectơ x=2a+b và y=a−b−c và z=−3b−2c. Khẳng định nào dưới đây là đúng?
Hàm số y=x+1x2−3x+5 nghịch biến trên khoảng nào sau đây?
Cho hàm số y=f(x) xác định trên R và có đồ thị hàm số y=f′(x) là đường cong như hình vẽ dưới đây.
Hàm số y=f(x) có bao nhiêu điểm cực trị?
Số tiệm cận đứng của đồ thị hàm số y=x2−16x2−3x−4 là
Để loại bỏ x% chất gây ô nhiễm không khí từ khí thải của một nhà máy, người ta ước tính chi phí cần bỏ ra là C(x)=100−x300x (triệu đồng), 0≤x≤100 trong đó C(x) là hàm số xác định trên[0;100]. Đường tiệm cận đứng của đồ thị hàm số y=C(x) là đường thẳng x=x0. Giá trị của x0 là
Cho hình lăng trụ tam giác đều ABC.A′B′C′ có tất cả các cạnh bằng 1. Gọi N là trung điểm của BC.
a) AA′.AN=0. |
|
b) AB.AC=21. |
|
c) AN.A′B=23 |
|
d) (AN,A′B)=60∘ |
|
Bảng số liệu ghép nhóm dưới đây cho biết dân số theo độ tuổi của người dân ở trong một nhóm người lao động.
a) Số người lao động tham gia thống kê về độ tuổi là 59 người. |
|
b) Độ tuổi trung bình của nhóm người lao động trên là 41,8. |
|
c) Độ tuổi trung vị của nhóm người lao động trên là 43,5. |
|
d) Phương sai của mẫu số liệu ghép nhóm trên là 135,86 |
|
Một khúc gỗ có dạng hình khối nón có bán kính đáy r=2 m, chiều cao l=6 m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ.
a) Đặt x là bán kính đáy hình trụ, h là chiều cao của hình trụ. Khi đó chiều cao của khối trụ tính theo bán kính đáy hình trụ là h=−3x+6 (m) với 0<x<2. |
|
b) Hàm số xác định thể tích của khối trụ trên là V=6x2−3x3 (m3), ∀x∈(0;2). |
|
c) Giả sử bác thợ mộc chế tác khúc gỗ đó thành hình trụ có bán kính đáy bằng chiều cao, khi đó thể tích của khối trụ là V=827π (m3). |
|
d) Thể tích lớn nhất của khối gỗ mà bác thợ mộc chế tác là Vmax=932π (m3). |
|
Một vật chuyển động có phương trình quãng đường tính bằng mét phụ thuộc thời gian t tính bằng giây được biểu thị bởi hàm số f(t)=−t3+9t2+21t (m).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Quãng đường mà vật đi được sau 2 s kể từ lúc bắt đầu chuyển động là 70 m . |
|
b) Vận tốc lớn nhất của vật thể là 21 (m/s). |
|
c) Vận tốc của vật tăng từ lúc bắt đầu chuyển động đến giây thứ 3. |
|
d) Kể từ lúc bắt đầu chuyển động đến khi dừng hẳn, vật đi được quãng đường là 250 m. |
|
Bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch ở nông trường như sau:
Cân nặng (g) | Số quả xoài |
[250;290) | 2 |
[290;330) | 12 |
[330;370) | 19 |
[370;410) | 12 |
[410;450) | 5 |
Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.
Trả lời: .
Một chiếc đèn tròn được treo song song với mặt phẳng nằm ngang bởi ba sợi dây không dãn xuất phát từ điểm O trên trần nhà lần lượt buộc vào ba điểm A,B,C trên đèn tròn sao cho tam giác ABC đều. Độ dài L của ba đoạn dây OA,OB,OC đều bằng l (m). Trọng lượng của chiếc đèn là 27 N và bán kính của chiếc đèn là 0,5 m.
Xác định chiều dài tối thiểu của mỗi sợi dây. Biết rằng mỗi sợi dây đó được thiết kế để chịu được lực căng tối đa là 12 N. (Chiều dài tính theo đơn vị cm và làm tròn đến chữ số thập phân thứ nhất)
Trả lời:
Hàm số y=(x+m)3+(x+n)3−x3 đồng biến trên khoảng (−∞;+∞). Giá trị nhỏ nhất của biểu thức P=100[4(m2+n2)−m−n] bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ nhất)
Trả lời:
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ:
Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=f(∣x−2∣) trên đoạn [−1;5]. Tính giá trị của M+m.
Trả lời:
Một hợp tác xã nuôi cá thí nghiệm trong hồ. Người ta thấy rằng nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ cân nặng P(n)=480−20n (gam). Cần phải thả số lượng cá trên một đơn vị diện tích của mặt hồ là bao nhiêu con để cân nặng trung bình của số cá đó lớn nhất?
Trả lời:
Một bể chứa 1000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ 15 gam muối cho mỗi lít nước với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Phương trình tiệm cận ngang của đồ thị hàm số y=f(t) là y=a. Tính a.
Trả lời: