Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 3) SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Hàm số y=2x3−9x2+12x+2017 nghịch biến trên khoảng nào sau đây?
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ.
Điểm cực tiểu của đồ thị hàm số là
Cho hàm số y=f(x) liên tục trên R và có bảng xét dấu f′(x) như hình vẽ:
Hàm số y=f(x) đồng biến trên khoảng nào dưới đây?
Tổng giá trị lớn nhất và nhỏ nhất của hàm số y=x2+x2 trên đoạn [21;2] bằng
Cho hàm số y=f(x) có x→+∞limf(x)=2, x→−∞limf(x)=+∞. Khẳng định nào sau đây đúng?
Đường cong ở hình dưới là đồ thị của hàm số nào?
Cho hàm số y=f(x) có đồ thị là đường cong như hình vẽ:
Số nghiệm của phương trình f(x)+2=0 là
Phương trình tiếp tuyến của đồ thị hàm số y=x−12x+1 tại điểm có hoành độ x=2 là
Điểm nào dưới đây thuộc đồ thị hàm số y=−x3+3x2−2?
Định luật vạn vật hấp dẫn của Newton được cho bởi công thức F=Gr2m1.m2. Trong đó F là lực hấp dẫn giữa hai vật thể bất kì, G là hằng số hấp dẫn, m1,m2 là khối lượng các vật, r là khoảng cách giữa chúng. Đồ thị của hàm số cho bởi công thức này có tiệm cận đứng là r=0, điều này có nghĩa là khi r dần về 0 thì lực hấp dẫn sẽ tiến đến
Kết quả của m để hàm số y=x+2x+m đồng biến trên từng khoảng xác định là
Cho hàm số y=bx−2ax+1. Giá trị của a;b để đồ thị hàm số có x=1 là tiệm cận đứng và y=21 là tiệm cận ngang lần lượt là
Cho hàm số y=f(x) liên tục và có đồ thị trên đoạn [−2;4] như hình vẽ.
a) Trên đoạn [−2;4], đồ thị hàm số y=f(x) có 2 điểm cực trị. |
|
b) Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;2] là −2. |
|
c) Giá trị lớn nhất của hàm số y=f(x) trên đoạn [1;4] là −4. |
|
d) Hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;4] là 11. |
|
Cho hàm số y=x−2x+2 có đồ thị (C).
(Nhấp vào ô màu vàng để chọn đúng / sai)
a) Đồ thị (C) có đường tiệm cận đứng x=2. |
|
b) Đồ thị (C) nhận điểm I(1;1) làm tâm đối xứng. |
|
c) Đường thẳng đường thẳng d:y=x−1 cắt đồ thị (C) tại 2 điểm phân biệt có độ dài bằng 45. |
|
d) Gọi M là điểm bất kì thuộc đồ thị (C). Khi đó tổng khoảng cách từ điểm M đến hai đường tiệm cận của đồ thị (C) đạt giá trị nhỏ nhất bằng 4. |
|
Chi phí nhiên liệu của một chiếc tàu chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng mỗi giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v=10 km/h thì phần thứ hai bằng 30 nghìn đồng mỗi giờ.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Khi vận tốc v=10 (km/h) thì chi phí nguyên liệu cho phần thứ nhất trên mỗi km đường sông là 48000 đồng. |
|
b) Hàm số xác định tổng chi phí nguyên liệu trên mỗi km đường sông với vận tốc x km/h là f(x)=x480+0,03x3. |
|
c) Khi vận tốc v=30 km/h thì tổng chi phí nguyên liệu trên mỗi km đường sông là 43000 đồng. |
|
d) Vận tốc của tàu để tổng chi phí nguyên liệu trên mỗi km đường sông nhỏ nhất là v=20 km/h. |
|
Cho hàm số y=f(x) có bảng biến thiên như sau:
a) Giá trị nhỏ nhất của hàm số trên [−2,5;1,5] là −2. |
|
b) Hàm số xác định và liên tục trên R. |
|
c) Điểm cực tiểu của đồ thị hàm số đã cho là (3;−2). |
|
d) Với −1<m<1 thì phương trình f(x)=m có 4 nghiệm phân biệt. |
|
Người ta muốn làm một cái bể dạng hình hộp chữ nhật không nắp (như hình vẽ) có thể tích bằng 1 m3. Chiều cao của bể là 5dm, các kích thước khác là x m, y m với x>0 và y>0. Diện tích toàn phần của bể (không kể nắp) là hàm số S(x) trên khoảng (0;+∞).
Đường tiệm cận xiên của đồ thị hàm số S(x) là đường thẳng y=ax+b. Tính P=a2+b2.
Trả lời:
Một phần lát cắt của dãy núi có độ cao tính bằng mét được mô tả bởi hàm số y=h(x)=−13200001x3+35209x2−4481x+840 với 0≤x≤2000. Biết đỉnh của lát cắt dãy núi nằm ở độ cao h (m) thuộc đoạn [1000;2000]. Tính h. (Kết quả làm tròn đến hàng đơn vị)
Trả lời:
Cho một tấm nhôm hình vuông có cạnh 24 cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gấp tấm nhôm lại như hình vẽ dưới đây để được một khối hộp chữ nhật không nắp.
Tìm x (đơn vị cm) sao cho thể tích khối hộp lớn nhất.
Trả lời:
Một cửa hàng kinh doanh rau tươi ước tính doanh thu bởi hàm số f(x)=x2−29000x+1000100000 (đồng) và tiền lãi thu được là g(x)=1000x+100000 (đồng) với x (đồng) là giá bán cho mỗi kg rau tươi. Biết doanh thu bằng tổng tiền lãi và tiền vốn. Tìm giá bán mỗi kg rau tươi (đơn vị nghìn đồng) sao cho cửa hàng phải bỏ vốn ra ít nhất.
Trả lời:
Cho hàm số y=f(x) có đồ thị như hình vẽ. Tìm số nghiệm thực của phương trình f2(x)−f(x)=0.
Trả lời:
Cho hàm số y=f(x) có đồ thị của hàm số y=f′(x) được cho như hình vẽ.
Hàm số y=−2f(2−x)+x2 nghịch biến trên khoảng (a;b) với a, b là các số nguyên. Tổng a+b có giá trị bằng bao nhiêu?
Trả lời: