Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Tam giác ABC có tổng hai góc B và C bằng 135∘ và độ dài cạnh BC bằng a. Bán kính đường tròn ngoại tiếp tam giác đã cho bằng
Giá trị của tan30∘+cot30∘ bằng
Cho hệ bất phương trình {x>0x+3y+1≤0 có tập nghiệm là S. Khẳng định nào sau đây đúng?
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Hình vẽ nào sau đây có phần không bị gạch biểu diễn cho tập A={x∈R3x−1≥2}?




Cho hai tập hợp A={1;2;5;7} và B={1;2;3}. Có tất cả bao nhiêu tập X khác rỗng thỏa mãn X⊂A và X⊂B?
Mệnh đề phủ định của "Bất phương trình x−2<0 vô nghiệm" là
Cho tam giác ABC có AB=5, B=60∘, C=45∘. Độ dài cạnh AC là
Đẳng thức nào sau đây sai?
Cho hình chữ nhật ABCD có cạnh AB=4, BC=6, M là trung điểm của BC, N là điểm trên cạnh CD sao cho ND=3NC. Bán kính của đường tròn ngoại tiếp tam giác AMN bằng
Cho biết cosα=−32. Giá trị của P=2cotα+tanαcotα+3tanα bằng
Phần tô màu (không bao gồm đường thẳng Δ) trong hình vẽ là miền nghiệm của bất phương trình nào sau đây?
Cho các hệ bất phương trình sau:⎩⎨⎧x−2y≤05x−y≥−4x+2y≤5, ⎩⎨⎧−x−y<4−x+2y>−2x+y<8x≥−6y≤6.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Miền nghiệm của hệ bất phương trình ⎩⎨⎧x−2y≤05x−y≥−4x+2y≤5 là miền tam giác. |
|
b) Điểm M(1;1) thỏa mãn miền nghiệm của hệ bất phương trình ⎩⎨⎧x−2y≤05x−y≥−4x+2y≤5. |
|
c) Miền nghiệm của hệ bất phương trình ⎩⎨⎧−x−y<4−x+2y>−2x+y<8x≥−6y≤6 là miền tứ giác. |
|
d) Điểm O(0;0) không thỏa mãn miền nghiệm của hệ bất phương trình ⎩⎨⎧−x−y<4−x+2y>−2x+y<8x≥−6y≤6. |
|
Cho ba tập hợp: A=(−∞;1]; B=[−2;2] và C=(0;5).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) C⊂A. |
|
b) A∩C=(0;1]. |
|
c) A∩B=(−2;1). |
|
d) (A∩B)∪(A∩C)=[−2;1]. |
|
Cho mệnh đề chứa biến P(x): "x>x3".
(Nhấp vào ô màu vàng để chọn đúng / sai)a) P(1) là mệnh đề sai. |
|
b) P(31) là mệnh đề đúng. |
|
c) Với mọi giá trị x∈N,P(x) không thể xác định tính đúng, sai. |
|
d) P(31) là mệnh đề sai. |
|
Cho các tập hợp CRA=[−3;8), CRB=(−5;2)∪(3;11).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) A=(−∞;−3)∪[8;+∞). |
|
b) B=(−∞;−5)∪(11;+∞). |
|
c) A∩B=(−∞;−5)∪[8;+∞). |
|
d) CR(A∩B)=(−5;11). |
|
Bạn Khương bản Mộc thống kê số ngày có mưa, có sương mù ở bản mình trong tháng 3 vào một thời điểm nhất định và được kết quả như sau: 14 ngày có mưa, 15 ngày có sương mù, trong đó 10 ngày có cả mưa và sương mù. Trong tháng 3 đó có bao nhiêu ngày không có mưa và không có sương mù?
Trả lời:
Cho các tập A=[−1;5], B={x∈R∣x∣≤2}, C={x∈Rx2−9>0} và D=[m;2m+1]. Tính tổng các giá trị của m sao cho ((A∪B)\C)∩D là một đoạn có độ dài bằng 1.
Trả lời:
Để chuẩn bị cho đại hội chi đoàn 10A1, bạn Nga được phân công đi mua hoa để cắm vào 3 lọ, mỗi lọ cắm số hoa mỗi loại như nhau. Bạn Nga được lớp giao cho 200 nghìn đồng để mua nhưng đến quầy bán chỉ còn 2 loại hoa và đã mua đủ để cắm. Biết rằng một loại hoa có giá 15 nghìn đồng/bông và một loại có giá 20 nghìn/bông. Số tiền dư ra ít nhất có thể là bao nhiêu nghìn đồng?
Trả lời:
Tìm giá trị lớn nhất của biểu thức F=x−3y+1 trên miền xác định bởi hệ ⎩⎨⎧2x−y≤4y−x≤1x+y≥2.
Trả lời:
Trong một cuộc thi pha chế đồ uống gồm hai loại là A và B, mỗi đội chơi được sử dụng tối đa 24 g hương liệu, 9 cốc nước lọc và 210 g đường. Để pha chế một cốc đồ uống loại A cần 1 cốc nước lọc, 30 g đường và 1 g hương liệu. Để pha chế một cốc đồ uống loại B cần 1 cốc nước lọc, 10 g đường và 4 g hương liệu. Mỗi cốc đồ uống loại A nhận được 6 điểm thưởng, mỗi cốc đồ uống loại B nhận được 8 điểm thưởng. Để đạt được số điểm thưởng cao nhất, đội chơi cần pha chế x cốc đồ uống loại A, y cốc đồ uống loại B. Tính x+y.
Trả lời:
Hai tàu đánh cá cùng xuất phát từ bến A và đi thẳng đều về hai vùng biển khác nhau, theo hai hướng tạo với nhau góc 120∘. Tàu thứ nhất đi với tốc độ 8 hải lí một giờ và tàu thứ hai đi với tốc độ 10 hải lí một giờ.
Sau mấy giờ thì khoảng cách giữa hai tàu là 60 hải lí? (Làm tròn kết quả đến chữ số thập phân thứ nhất)
Trả lời: