Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 3) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong các câu sau, câu nào là một mệnh đề đúng?
Mệnh đề phủ định của mệnh đề "Phương trình x2+2x+5=0 vô nghiệm" là
Cho A, B, C là ba tập hợp được minh họa bằng sơ đồ Ven như hình vẽ:
Phần gạch sọc trong hình vẽ trên là tập hợp nào sau đây?
Cặp số nào sau đây là nghiệm của bất phương trình 2x−3y≤6(x−y)+3x−2y+4?
Hệ bất phương trình nào sau đây không là hệ bất phương trình bậc nhất hai ẩn?
Trên nửa đường tròn đơn vị, cho góc α như hình vẽ:
Các giá trị lượng giác của góc α là
Công thức nào sau đây đúng?
Cho tam giác ABC với BC=7 cm, AC=9 cm, AB=4 cm. Giá trị cosA bằng
Cho hai tập hợp A={x∈Z2x2−3x+1=0},B={x∈N3x+2<9}. Khi đó A∩B là
Miền tam giác ABC kể cả ba cạnh (phần tô màu) trong hình vẽ là miền nghiệm của hệ bất phương trình nào trong bốn hệ bất phương trình dưới đây?
Cho sinx+cosx=m. Giá trị của M=sinx.cosx tính theo m là
Cho góc α thỏa mãn cosα=31. Giá trị của biểu thức P=sinα+cosα1 bằng
Cho ba tập A=[−2;0], B={x∈R−1<x<0}, C={x∈R∣x∣<2}.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) B=(−1;0). |
|
b) C=(−∞;−2)∪(2;+∞). |
|
c) A∩C=(−2;0]. |
|
d) (A∩C)\B=(−2;−1]. |
|
Đô thích ăn hai loại trái cây là cam và xoài, mỗi tuần mẹ cho Đô 200 nghìn đồng để mua trái cây. Biết rằng giá cam là 15 000 đồng/1 kg, giá xoài là 30 000 đồng/1 kg. Gọi x,y (với a>0;y>0) lần lượt là số ki-lô-gam cam và xoài mà Đô có thể mua về sử dụng trong một tuần.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Trong tuần, số tiền Đô có thể mua cam là 15000x đồng, số tiền An có thể mua xoài là 30000y đồng. |
|
b) 3x+6y≥40. |
|
c) Đô không thể mua đủ 5 kg cam, 4 kg xoài sử dụng trong tuần. |
|
d) Đô có thể mua 4 kg cam, 6 kg xoài sử dụng trong tuần. |
|
Cho hệ bất phương trình ⎩⎨⎧3x+2y≥9x−2y≤3x+y≤6x≥1 (I).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Miền nghiệm của hệ bất phương trình (I) là một miền tam giác. |
|
b) (3;2) là một nghiệm của hệ bất phương trình (I). |
|
c) x=1;y=3 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị lớn nhất. |
|
d) x=1;y=5 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị nhỏ nhất. |
|
Cho biết tanα=−43,90∘<α<180∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosα>0. |
|
b) cosα=−54. |
|
c) cotα=−34. |
|
d) sinα=−53. |
|
Trong đợt quyên góp ủng hộ đồng bào miền Bắc bị lũ lụt năm 2024, có 25 học sinh lớp 2A đã tham gia ủng hộ, mỗi học sinh ủng hộ nhiều nhất hai tờ tiền khác nhau trong ba loại tờ tiền mệnh giá 5 000 đồng, 10 000 đồng và 20 000 đồng. Biết rằng số học sinh đã tham gia ủng hộ thỏa mãn đồng thời ba kết quả sau:
(1) Số học sinh chỉ ủng hộ một tờ 5 000 đồng bằng tổng số học sinh chỉ ủng hộ một tờ 10 000 đồng và số học sinh chỉ ủng hộ một tờ 20 000 đồng.
(2) Trong số học sinh không ủng hộ tờ 5 000 đồng thì số học sinh có ủng hộ tờ 10 000 đồng nhiều gấp hai lần số học sinh có ủng hộ tờ 20 000 đồng.
(3) Số học sinh chỉ ủng hộ một tờ 5 000 đồng nhiều hơn số học sinh ủng hộ tờ 5 000 đồng và một tờ khác là 1 học sinh.
Có bao nhiêu học sinh lớp 2A chỉ ủng hộ một tờ 10 000 đồng?
Trả lời:
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−2022;2022] để nghiệm của hệ phương trình {x+2y=32x−y=1 không thuộc miền nghiệm của bất phương trình x+(m+1)y+1≥0?
Trả lời:
Trong một cuộc thi pha chế đồ uống gồm hai loại là A và B, mỗi đội chơi được sử dụng tối đa 24 g hương liệu, 9 cốc nước lọc và 210 g đường. Để pha chế một cốc đồ uống loại A cần 1 cốc nước lọc, 30 g đường và 1 g hương liệu. Để pha chế một cốc đồ uống loại B cần 1 cốc nước lọc, 10 g đường và 4 g hương liệu. Mỗi cốc đồ uống loại A nhận được 6 điểm thưởng, mỗi cốc đồ uống loại B nhận được 8 điểm thưởng. Để đạt được số điểm thưởng cao nhất, đội chơi cần pha chế x cốc đồ uống loại A, y cốc đồ uống loại B. Tính x+y.
Trả lời:
Giả sử chúng ta cần đo chiều cao CD của một cái tháp với C là chân tháp, D là đỉnh tháp. Vì không thể đến chân tháp được nên từ hai điểm A,B có khoảng cách AB=30 m sao cho ba điểm A,B,C thẳng hàng, người ta đo được các góc CAD=43∘, CBD=67∘.
Tính chiều cao CD của tháp (Làm tròn kết quả đến chữ số hàng đơn vị của mét)
Trả lời:
Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Khi đó tỉ số rR có dạng a+bc, với a,b,c∈N và c là số nguyên tố. Tính giá trị của biểu thức T=a+b+c.
Trả lời:
Miền nghiệm của hệ ⎩⎨⎧0≤x≤100≤y≤92x+y≥142x+5y≥30 là miền đa giác. Tính diện tích đa giác đó. (làm tròn đến chữ số thập phân thứ nhất)
Trả lời: