Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho dãy số có các số hạng đầu là 31;321;331;341;.... Số hạng tổng quát của dãy số này là
Trong các dãy số cho bởi số hạng tổng quát un sau đây, dãy số nào là cấp số cộng?
Nghiệm của phương trình cot32x=3 là
Giá trị lớn nhất của hàm số y=3sinx là
Xét hàm số y=sinx trên khoảng (−π;π). Đồ thị của hàm số có hướng đi xuống trên khoảng
Khẳng định nào sau đây đúng?
Cho bốn cung (trên một đường tròn định hướng): α=−65π;β=3π;δ=619π;γ=325π. Các cung nào có điểm cuối trùng nhau?
Đơn giản biểu thức A=cos(α−2π)+sin(α−π), ta được
Tìm hiểu thời gian hoàn thành một bài kiểm tra đánh giá thường xuyên (đơn vị: phút) của một số học sinh thu được kết quả sau:
Thời gian (phút) | [10;11) | [11;12) | [12;13) | [13;14) | [14;15) |
Số học sinh | 1 | 2 | 5 | 12 | 20 |
Thời gian trung bình (phút) để hoàn thành bài kiểm tra của các em học sinh là
Cho dãy số (un) là một cấp số cộng có u1=3 và công sai d=4. Biết tổng của n số hạng đầu tiên của dãy số (un) là Sn=253. Giá trị n bằng
Điều kiện của tham số m để phương trình cosx=m−2021 có nghiệm là
Tổng A=sin5x+sin6x+sin7x+sin8x có thể biến thành tích
Cho mẫu số liệu ghép nhóm về lương của nhân viên trong một công ty như sau:
Lương (triệu đồng) | [9;12) | [12;15) | [15;18) | [18;21) | [21;24) |
Số nhân viên | 6 | 12 | 4 | 2 | 1 |
a) Giá trị đại diện của nhóm [9;12) là 10,5. |
|
b) Trung bình lương các nhân viên là 16,5 triệu đồng. |
|
c) Nhóm chứa trung vị là [15;18). |
|
d) Tứ phân vị thứ ba là 15,56. |
|
Cho dãy số (un) biết un=n+22n+1,n∈N∗.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hai số hạng đầu của dãy là u1=1 và u2=35. |
|
b) Dãy số (un) là một dãy số tăng. |
|
c) Dãy số (un) bị chặn trên bởi 1733. |
|
d) Dãy số (un) có duy nhất một số hạng nguyên. |
|
Một vật dao động xung quanh vị trí cân bằng theo phương trình x=1,5cos(4tπ); trong đó t là thời gian được tính bằng giây và quãng đường h=∣x∣ được tính bằng mét là khoảng cách theo phương ngang của vật đối với vị trí cân bằng.
a) Vật ở xa vị trí cân bằng nhất nghĩa là h=1,5 m. |
|
b) Trong 10 giây đầu tiên, có hai thời điểm vật ở xa vị trí cân bằng nhất. |
|
c) Khi vật ở vị trí cân bằng thì cos(4tπ)=0. |
|
d) Trong khoảng từ 0 đến 20 giây thì vật đi qua vị trí cân bằng 4 lần. |
|
Để tích lũy cho việc học đại học của cậu con trai đầu lòng, cô Lan quyết định hằng tháng bỏ ra 600 nghìn đồng vào tài khoản tiết kiệm, được trả lãi 0,5% cộng dồn hằng tháng. Cô bắt đầu chương trình tích lũy này khi cậu con trai tròn ba tuổi và gửi tiền vào đầu mỗi tháng.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Đến lần gửi khoản tiền thứ 180 thì cậu con trai tròn 18 tuổi. |
|
b) Số tiền của cô Lan có trong chương trình ở đầu tháng thứ 2 là 0,6(1+0,5%) triệu đồng. |
|
c) Số tiền của cô Lan có trong chương trình ở đầu tháng thứ 5 là 3030000 đồng. |
|
d) Số tiền của cô Lan có trong chương trình vào thời điểm cậu con trai đầu lòng tròn 18 tuổi nhỏ hơn 160 triệu đồng. |
|
Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4000000 đồng vào một ngày cố định của tháng ở ngân hàng M với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Tính A, đơn vị triệu đồng, làm tròn tới hàng đơn vị.
Trả lời:
Cô Lan đang tiết kiệm để mua laptop. Trong tuần đầu tiên, cô ấy để dành 200 đô la, và trong mỗi tuần tiếp theo, cô đã thêm 16 đô la vào tài khoản tiết kiệm của mình. Chiếc laptop cô Lan cần mua có giá 1000 đô la. Vào tuần thứ bao nhiêu thì cô ấy có đủ tiền để mua chiếc laptop đó?
Trả lời:
Trong một thí nghiệm, một viên bi sắt được gắn vào một đầu lò xo đàn hồi, đầu còn lại được cố định vào một thanh treo ngang. Sau khi viên bi được kéo xuống và thả ra, nó bắt đầu di chuyển lên xuống. Khi đó, chiều cao h cm của bi so với mặt đất theo thời gian t giây được cho bởi công thức: h=100−30cos20t. Tính thời điểm đầu tiên mà bi sắt đạt chiều cao cao nhất kể từ khi nó được thả ra (làm tròn kết quả đến hàng phần trăm).
Trả lời:
Từ một vị trí A, người ta buộc hai sợi cáp AB và AC đến một cái trụ cao 15 m, được dựng vuông góc với mặt đất, chân trụ ở vị trí D. Biết CD=9 m và AD=12 m. Tìm góc nhọn α=BAC tạo bởi hai sợi dây cáp đó, đồng thời tính gần đúng α (làm tròn đến hàng phần mười, đơn vị độ).
Trả lời:
Cho cấp số nhân (vn). Biết rằng ba số v1,v4 và v7 lần lượt là các số hạng thứ nhất, thứ hai và thứ mười của một cấp số cộng có công sai d=0. Tìm công bội q của cấp số nhân (vn).
Trả lời:
Cho hình vuông (C1) có cạnh bằng a. Người ta chia mỗi cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông (C2).
Từ hình vuông (C2) lại tiếp tục làm như trên ta nhận được dãy các hình vuông C1, C2, C3,..., Cn. Gọi Si là diện tích của hình vuông Ci,(i∈{1;2;3,.....}). Đặt T=S1+S2+S3+...+Sn+.... Biết T=332, tính a?
Trả lời: