Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Với cặp giá trị x,y nào dưới đây thì mệnh đề chứa biến P: "3x−2y=5" là mệnh đề đúng?
Cho hai mệnh đề: P: "30 không chia hết cho 5" và Q: "π<3,15". Khẳng định nào sau đây đúng?
Cho A, B, C là ba tập hợp được minh họa bằng sơ đồ Ven như hình vẽ:
Phần gạch sọc trong hình vẽ trên là tập hợp nào sau đây?
Cặp số nào sau đây là nghiệm của bất phương trình 2x−3y≤6(x−y)+3x−2y+4?
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Đẳng thức nào sau đây đúng?
Công thức nào sau đây đúng?
Cho tam giác ABC có độ dài các cạnh là a, b và c. Mệnh đề nào sau đây đúng?
Cho A={x∈Nx⋮6}; B={x∈Nx⋮2,x⋮3}. Khẳng định nào sau đây sai?
Phần không tô màu là hình vẽ biểu diễn miền nghiệm của hệ bất phương trình nào dưới đây?
Cho tanα−cotα=3. Giá trị của biểu thức A=tan2α+cot2α là
Cho biết sin3α=53. Giá trị của P=3sin23α+5cos23α bằng
Cho ba tập A=[−2;0], B={x∈R−1<x<0}, C={x∈R∣x∣<2}.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) B=(−1;0). |
|
b) C=(−∞;−2)∪(2;+∞). |
|
c) A∩C=(−2;0]. |
|
d) (A∩C)\B=(−2;−1]. |
|
Một xưởng sản xuất định lựa chọn hai loại máy chế biến loại I và loại II. Máy loại I mỗi ngày một máy chế biến được 300 kg sản phẩm, máy loại II mỗi ngày một máy chế biến được 450 kg sản phẩm. Biết rằng, để có lãi mỗi ngày xưởng phải sản xuất được nhiều hơn 50 tấn sản phẩm. Gọi x, y tương ứng là số lượng máy loại I và máy loại II xưởng chọn để sản xuất.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Khối lượng sản phẩm tạo ra trong một ngày từ số lượng máy trên là F(x;y)=30x+45y. |
|
b) Để đảm bảo xưởng có lãi mỗi ngày, ta cần 6x+9y−1000>0. |
|
c) Xưởng nên lựa chọn 50 máy chế biến loại I và 80 máy chế biến loại II để đảm bảo có lãi. |
|
d) Nếu xưởng lựa chọn 70 máy chế biến loại I và 60 máy chế biến loại II sẽ không đảm bảo có lãi. |
|
Cho hệ bất phương trình ⎩⎨⎧3x+2y≥9x−2y≤3x+y≤6x≥1 (I).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Miền nghiệm của hệ bất phương trình (I) là một miền tam giác. |
|
b) (3;2) là một nghiệm của hệ bất phương trình (I). |
|
c) x=1;y=3 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị lớn nhất. |
|
d) x=1;y=5 là nghiệm của hệ bất phương trình (I) thỏa mãn F=3x−y đạt giá trị nhỏ nhất. |
|
Cho sinα=1312, với 0∘<α<90∘.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosα<0. |
|
b) cosα=1−sin2α. |
|
c) tanα=−512. |
|
d) cotα=−125. |
|
Bạn Khương bản Mộc thống kê số ngày có mưa, có sương mù ở bản mình trong tháng 3 vào một thời điểm nhất định và được kết quả như sau: 14 ngày có mưa, 15 ngày có sương mù, trong đó 10 ngày có cả mưa và sương mù. Trong tháng 3 đó có bao nhiêu ngày không có mưa và không có sương mù?
Trả lời:
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−2022;2022] để nghiệm của hệ phương trình {x+2y=32x−y=1 không thuộc miền nghiệm của bất phương trình x+(m+1)y+1≥0?
Trả lời:
Một công ty TNHH trong một đợt quảng cáo và bán khuyến mãi hàng hóa cho sản phẩm mới của công ty cần thuê xe để chở trên 140 người và trên 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B. Trong đó xe loại A có 10 chiếc, xe loại B có 9 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu, loại B giá 3 triệu. Công ty có kế hoạch thuê x xe loại A và y xe loại B để chi phí vận chuyển là thấp nhất. Biết rằng xe A chỉ chở tối đa 20 người và 0,6 tấn hàng. Xe B chở tối đa 10 người và 1,5 tấn hàng. Tính x+y.
Trả lời:
Giả sử chúng ta cần đo chiều cao CD của một cái tháp với C là chân tháp, D là đỉnh tháp. Vì không thể đến chân tháp được nên từ hai điểm A,B có khoảng cách AB=30 m sao cho ba điểm A,B,C thẳng hàng, người ta đo được các góc CAD=43∘, CBD=67∘.
Tính chiều cao CD của tháp (Làm tròn kết quả đến chữ số hàng đơn vị của mét)
Trả lời:
Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Khi đó tỉ số rR có dạng a+bc, với a,b,c∈N và c là số nguyên tố. Tính giá trị của biểu thức T=a+b+c.
Trả lời:
Biểu thức F=y−x đạt giá trị nhỏ nhất với điều kiện ⎩⎨⎧−2x+y≤−2x−2y≤2x+y≤5x≥0 tại điểm S(x;y) với x và y là các số nguyên. Tính x2+y2.
Trả lời: