Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Với 2π<α<π mệnh đề nào sai?
i. cos(2π−α)>0.
ii. sin(2π−α)>0.
iii. tan(2π−α)>0.
Cho bốn cung (trên một đường tròn định hướng): α=−65π;β=3π;δ=619π;γ=325π. Các cung nào có điểm cuối trùng nhau?
Tập giá trị của hàm số y=sin2x là
Hàm số nào dưới đây có đồ thị là đường cong như hình vẽ?
Hàm số nào sau đây là hàm số tuần hoàn với chu kì bằng 2π?
Dãy số cho bởi số hạng tổng quát un nào sau đây là cấp số cộng?
Cho cấp số cộng (un) có u1=1,d=−4. Giá trị u3 bằng
Cho cấp số nhân có số hạng đầu u1=3, công bội q=2. Tổng 5 số hạng đầu tiên S5 của cấp số nhân là
Cho 47π<α<2π, kết quả nào sau đây đúng?
Phương trình 2sin2x−3sinx+1=0 có bao nhiêu nghiệm thuộc [0;π]?
Tập nghiệm S của phương trình cosx.sin(2x−3π)=0 là
Trong các dãy số (un) với số hạng tổng quát un dưới đây, dãy nào là dãy số bị chặn dưới?
Cho cosa=43; sina>0; sinb=53; cosb<0.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Giá trị của tana=37. |
|
b) Giá trị của cotb=−32. |
|
c) Giá trị của cos2a+cos2b thuộc khoảng (21;1). |
|
d) Giá trị của cos(a+b) thuộc khoảng (−21;−31). |
|
Cho phương trình lượng giác 3−3tan(2x−3π)=0.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình có nghiệm x=6π+2kπ,k∈Z. |
|
b) Phương trình có nghiệm âm lớn nhất bằng −3π. |
|
c) Khi 4−π<x<32π thì phương trình có ba nghiệm. |
|
d) Tổng các nghiệm của phương trình trong khoảng (4−π;32π) bằng 6π. |
|
Một nhà hát có 25 hàng ghế với 16 ghế ở hàng thứ nhất, 18 ghế ở hàng thứ hai, 20 ghế ở hàng thứ ba và cứ tiếp tục theo quy luật đó, tức là hàng sau nhiều hơn hàng liền trước nó 2 ghế. Gọi un (ghế) là tổng số ghế ở hàng thứ n.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) u2=18. |
|
b) Dãy số (un) là cấp số cộng có công sai d=2. |
|
c) Số ghế ở hàng thứ 20 nhỏ hơn 54. |
|
d) Tổng số ghế trong nhà hát nhiều hơn 1000. |
|
Cho góc α,(0∘<α<180∘) thỏa mãn tanα=3.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cotα=31. |
|
b) cosα>0. |
|
c) sinα=10310. |
|
d) 3sinα+2cosα2sinα−3cosα=11−3. |
|
Trong môn cầu lông, khi phát cầu, người chơi cần đánh cầu qua khỏi lưới sang phía sân đối phương và không được để cho cầu rơi ngoài biên. Trong mặt phẳng toạ độ Oxy, chọn điểm có tọa độ (O;y0) là điểm xuất phát thì phương trình quỹ đạo của cầu lông khi rời khỏi mặt vợt là: y=2.v02.cos2α−g.x2+tan(α).x+y0; trong đó: g là gia tốc trọng trường (thường được chọn là 9,8 m/s2; α là góc phát cầu (so với phương ngang của mặt đất); v0 là vận tốc ban đầu của cầu; y0 là khoảng cách từ vị trí phát cầu đến mặt đất. Quỹ đạo chuyển động của quả cầu lông là một parabol như hình vẽ.
Một người chơi cầu lông đang đứng khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa) là 6,68 m. Người chơi đó đã phát cầu với góc tối đa khoảng bao nhiêu độ so với mặt đất? (biết cầu rời mặt vợt ở độ cao 0,7 m so với mặt đất và vận tốc xuất phát của cầu là 8 m/s, bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng thẳng đứng, làm tròn kết quả tới hàng đơn vị).
Trả lời:
Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4000000 đồng vào một ngày cố định của tháng ở ngân hàng M với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Tính A, đơn vị triệu đồng, làm tròn tới hàng đơn vị.
Trả lời:
Cô Lan đang tiết kiệm để mua laptop. Trong tuần đầu tiên, cô ấy để dành 200 đô la, và trong mỗi tuần tiếp theo, cô đã thêm 16 đô la vào tài khoản tiết kiệm của mình. Chiếc laptop cô Lan cần mua có giá 1000 đô la. Vào tuần thứ bao nhiêu thì cô ấy có đủ tiền để mua chiếc laptop đó?
Trả lời:
Cho dãy số (un) xác định bởi {u1=1un+1=un−2(n+1) với n≥1. Tính giá trị biểu thức S=3−u13+3−u23+3−u33+...+3−u203 (làm tròn kết quả đến chữ số thập phân thứ hai)
Trả lời:
Có bao nhiêu số nguyên m để phương trình (m+1)sin2x=1−2m−sin2x có đúng 2 nghiệm thuộc [12π;32π)?
Trả lời:
Số giờ có ánh sáng của một thành phố A trong ngày thứ t của năm 2025 được cho bởi một hàm số y=4sin178π(t−60)+10, với t∈Z và 60<t≤365. Vào ngày thứ bao nhiêu trong năm đó thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?
Trả lời: