Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho góc α có điểm biểu diễn nằm ở góc phần tư thứ nhất của đường tròn lượng giác, kết quả nào sau đây đúng?
Cho góc lượng giác (OA,OB) có số đo bằng 5π. Số nào sau đây là số đo của một góc lượng giác có cùng tia đầu, tia cuối với (OA,OB)?
Tập giá trị của hàm số y=sin2x là
Hai hàm số nào sau đây tăng trên khoảng (0;2π)?
Mệnh đề nào sau đây sai?
Dãy số cho bởi số hạng tổng quát un nào sau đây là cấp số cộng?
Cho cấp số cộng (un) có u1=−3 và công sai d=3. Số hạng u10 là
Cho cấp số nhân có số hạng đầu u1=3, công bội q=2. Tổng 5 số hạng đầu tiên S5 của cấp số nhân là
Cho bốn cung (trên một đường tròn định hướng): α=−65π;β=3π;δ=619π;γ=325π. Các cung nào có điểm cuối trùng nhau?
Phương trình 2sin2x−3sinx+1=0 có bao nhiêu nghiệm thuộc [0;π]?
Cho phương trình cos(2x−3π)−m=2. Giá trị của m để phương trình có nghiệm là
Trong các dãy số (un) với số hạng tổng quát un dưới đây, dãy nào là dãy số bị chặn dưới?
Cho hai biểu thức A=cos(nα) và B=sin(nβ) với n∈N∗.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Với n=2 ta có A=1−2cos2α. |
|
b) Với n=3 ta có B=4sinβ−3sin3β. |
|
c) Với n∈N∗ ta có A2=21+cos(2nα). |
|
d) Với n∈N∗ ta có AB=21[−sinn(α−β)+sinn(β+α)]. |
|
Cho phương trình lượng giác 3−3tan(2x−3π)=0.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Phương trình có nghiệm x=6π+2kπ,k∈Z. |
|
b) Phương trình có nghiệm âm lớn nhất bằng −3π. |
|
c) Khi 4−π<x<32π thì phương trình có ba nghiệm. |
|
d) Tổng các nghiệm của phương trình trong khoảng (4−π;32π) bằng 6π. |
|
Giá của một chiếc xe ô tô lúc mới mua là 680 triệu đồng. Cứ sau mỗi năm sử dụng, giá của chiếc xe ô tô giảm 50 triệu đồng. Gọi un là giá của chiếc ô tô trong năm thứ n sử dụng.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) u2=630. |
|
b) Dãy số (un) là cấp số cộng với công sai d=50. |
|
c) Giá của chiếc ô tô sau 3 năm sử dụng lớn hơn 500 triệu đồng. |
|
d) Sau ít nhất 8 năm sử dụng thì giá của chiếc ô tô nhỏ hơn một nửa giá trị ban đầu của nó. |
|
Biết sina=178,tanb=125 và a, b là các góc nhọn.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) tana=158. |
|
b) sin(a−b)=22121. |
|
c) cos(a+b)=2214. |
|
d) tan(a+b)=1417. |
|
Trong môn cầu lông, khi phát cầu, người chơi cần đánh cầu qua khỏi lưới sang phía sân đối phương và không được để cho cầu rơi ngoài biên. Trong mặt phẳng toạ độ Oxy, chọn điểm có tọa độ (O;y0) là điểm xuất phát thì phương trình quỹ đạo của cầu lông khi rời khỏi mặt vợt là: y=2.v02.cos2α−g.x2+tan(α).x+y0; trong đó: g là gia tốc trọng trường (thường được chọn là 9,8 m/s2; α là góc phát cầu (so với phương ngang của mặt đất); v0 là vận tốc ban đầu của cầu; y0 là khoảng cách từ vị trí phát cầu đến mặt đất. Quỹ đạo chuyển động của quả cầu lông là một parabol như hình vẽ.
Một người chơi cầu lông đang đứng khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa) là 6,68 m. Người chơi đó đã phát cầu với góc tối đa khoảng bao nhiêu độ so với mặt đất? (biết cầu rời mặt vợt ở độ cao 0,7 m so với mặt đất và vận tốc xuất phát của cầu là 8 m/s, bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng thẳng đứng, làm tròn kết quả tới hàng đơn vị).
Trả lời:
Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4000000 đồng vào một ngày cố định của tháng ở ngân hàng M với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6% tháng. Gọi A đồng là số tiền người đó có được sau 25 năm. Tính A, đơn vị triệu đồng, làm tròn tới hàng đơn vị.
Trả lời:
Hùng đang tiết kiệm để mua một cây đàn piano có giá 142 triệu đồng. Trong tháng đầu tiên, anh ta để dành được 20 triệu đồng. Mỗi tháng tiếp theo anh ta để dành được 3 triệu đồng và đưa vào số tiền tiết kiệm của mình. Hỏi ít nhất vào tháng thứ bao nhiêu thì Hùng mới có đủ tiền để mua cây đàn piano đó?
Trả lời:
Cho dãy số (un) biết un=n+2an+5. Có bao nhiêu giá trị nguyên của a nhỏ hơn 100 để dãy số (un) là dãy số tăng.
Trả lời:
Có bao nhiêu số nguyên m để phương trình (m+1)sin2x=1−2m−sin2x có đúng 2 nghiệm thuộc [12π;32π)?
Trả lời:
Số giờ có ánh sáng của một thành phố A trong ngày thứ t của năm 2025 được cho bởi một hàm số y=4sin178π(t−60)+10, với t∈Z và 60<t≤365. Vào ngày thứ bao nhiêu trong năm đó thì thành phố A có nhiều giờ ánh sáng mặt trời nhất?
Trả lời: