Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong không gian cho ba vectơ a,b,c không đồng phẳng. Khẳng định nào dưới đây đúng?
Trong không gian với hệ tọa độ (O,i,j,k), cho OM=(2;−3;−1). Khẳng định nào sau đây đúng?
Giá trị cực tiểu của hàm số y=4x4+3x3 là
Cho hàm số y=f(x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Giá trị nhỏ nhất của hàm số y=f(x)=x4−6x2−1 trên đoạn [−1;3] bằng
Đồ thị sau là của một trong bốn hàm số đã cho, đó là hàm số nào?
Đồ thị hàm số dưới đây nhận giao của hai đường tiệm cận I(a;b) làm tâm đối xứng. Giá trị của biểu thức T=2a−3b là
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ.
Số nghiệm của phương trình 2f(x)−1=4 là
Một ứng dụng của hàm số trong vật lí là hệ số tương đối tính Lorentz được cho bởi công thức γ(v)=1−c2v21, với v là vận tốc tương đối giữa các hệ quy chiếu quán tính, c là tốc độ ánh sáng trong chân không. Hàm này được sử dụng trong thuyết tương đối đặc biệt của Einstein để mô tả các hiệu ứng tương đối tính có đồ thị dưới đây:
Đồ thị hàm số đó có tiệm cận đứng là
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt SA=a;SB=d;SC=c; SD=b. Khẳng định nào sau đây đúng?
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có ba đỉnh A(−1;1;−3), B(4;2;1), C(3;0;5). Tọa độ trọng tâm G của tam giác ABC là
Cho tứ diện ABCD có G là trọng tâm tam giác BCD. Đặt x=AB;y=AC;z=AD. Biểu diễn AG theo x;y;z ta được
Trong không gian, cho tứ diện ABCD có trọng tâm G và một điểm O tùy ý.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) GA+GB+GC+GD=0. |
|
b) OG=41(OA+OB+OC+OD). |
|
c) BG=GA+GC+GD. |
|
d) AG=32(AB+AC+AD). |
|
Cho hàm số y=f(x) liên tục và có đồ thị trên đoạn [−2;4] như hình vẽ.
a) Trên đoạn [−2;4], đồ thị hàm số y=f(x) có 2 điểm cực trị. |
|
b) Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;2] là −2. |
|
c) Giá trị lớn nhất của hàm số y=f(x) trên đoạn [1;4] là −4. |
|
d) Hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;4] là 11. |
|
Cho hàm số y=1−x2x+2.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số có tập xác định D=(−1;1). |
|
b) Đồ thị hàm số có 2 đường tiệm cận ngang là y=1 và y=−1. |
|
c) Đồ thị hàm số có 2 đường tiệm cận đứng là x=1 và x=−1. |
|
d) Đồ thị hàm số có tất cả 3 đường tiệm cận. |
|
Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong t giờ được cho bởi hàm số có công thức c(t)=t2+1t (mg/L).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Nồng độ thuốc trong máu của bệnh nhân sau 3 giờ là c(3)=103 (mg/L). |
|
b) Đạo hàm của hàm số c(t)=t2+1t là c′(t)=(t2+1)21−t2. |
|
c) Nồng độ thuốc trong máu bệnh nhân tăng trong khoảng t∈(0;2). |
|
d) Nồng độ thuốc trong máu của bệnh nhân cao nhất khi t=21. |
|
Một chiếc đèn tròn được treo song song với mặt phẳng nằm ngang bởi ba sợi dây không dãn xuất phát từ điểm O trên trần nhà lần lượt buộc vào ba điểm A,B,C trên đèn tròn sao cho tam giác ABC đều. Độ dài L của ba đoạn dây OA,OB,OC đều bằng l (m). Trọng lượng của chiếc đèn là 27 N và bán kính của chiếc đèn là 0,5 m.
Xác định chiều dài tối thiểu của mỗi sợi dây. Biết rằng mỗi sợi dây đó được thiết kế để chịu được lực căng tối đa là 12 N. (Chiều dài tính theo đơn vị cm và làm tròn đến chữ số thập phân thứ nhất)
Trả lời:
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Tìm giá trị k trong đẳng thức vectơ MN=k(AD+BC). (ghi kết quả dưới dạng số thập phân)
Trả lời:
Giả sử chi phí cho xuất bản x cuốn tạp chí (gồm: lương cán bộ, công nhân viên, giấy in,...) được cho bởi công thức:
C(x)=0,0001x2−0,2x+10000
trong đó C(x) được tính theo đơn vị là vạn đồng (1 vạn đồng =10000 đồng). Chi phí phát hành cho mỗi cuốn là 4 nghìn đồng. Tỉ số M(x)=xT(x) được gọi là chi phí trung bình cho một cuốn tạp chí khi xuất bản x cuốn và tổng chỉ phí T(x) (xuất bản và phát hành) cho x cuốn tạp chí. Chi phí trung bình thấp nhất cho một cuốn tạp chí là bao nhiêu vạn đồng, biết rằng nhu cầu hiện tại xuất bản không quá 30000 cuốn?
Trả lời:
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ:
Có bao nhiêu giá trị nguyên của tham số m để phương trình f(∣x+m∣)=m có đúng 6 nghiệm phân biệt?
Trả lời:
Tại một công ty sản xuất đồ chơi an toàn cho trẻ em, công ty phải chi 40000 USD để thiết lập dây chuyền sản xuất ban đầu. Sau đó, cứ sản xuất được một sản phẩm đồ chơi A, công ty phải trả 6 USD cho nguyên liệu ban đầu và nhân công. Gọi x, (x≥1) là số đồ chơi A mà công ty đã sản xuất và P(x) (đơn vị USD) là tổng số tiền bao gồm cả chi phí ban đầu mà công ty phải chi trả khi sản xuất x đồ chơi A. Người ta xác định chi phí trung bình cho mỗi sản phẩm đồ chơi A là F(x)=xP(x). Xem y=F(x) là hàm số theo x xác định trên nửa khoảng [1;+∞) có phương trình đường tiệm cận ngang là y=b. Tính b.
Trả lời:
Cho hàm số bậc ba y=f(x) có bảng biến thiên như sau:
Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y=f(x2−2x+m+1) có 3 điểm cực trị?
Trả lời: