Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Tải đề xuống bằng file Word
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Trong các hàm số y=x+2x+1, y=tanx, y=x3+x2+4x−2026, có bao nhiêu hàm số đồng biến trên R?
Hàm số y=x3−3x2−1 đạt cực trị tại các điểm nào sau đây?
Cho hàm số y=f(x) xác định và liên tục trên khoảng (−∞;21) và (21;+∞). Đồ thị hàm số y=f(x) là đường cong trong hình vẽ.
Khẳng định nào sau đây đúng?
Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y=x+12x−1 có phương trình lần lượt là
Đồ thị hàm số y=x3−6x2+11x−6 cắt trục hoành tại bao nhiêu điểm phân biệt?
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?
Cho hình hộp ABCD.A′B′C′D′, có đáy ABCD hình bình hành tâm O.
Khi đó 2AO bằng vectơ nào dưới đây?
Trong không gian với hệ toạ độ Oxyz, cho hình lập phương ABCD.A′B′C′D′ có đỉnh A trùng với gốc toạ độ O, điểm B(1;0;0), D(0;1;0), D′(0;1;−1).
Toạ độ vectơ B′D′ tương ứng là
Giá trị nhỏ nhất của hàm số y=x31−x1 khi x>0 là
Cho ba hàm số: y=x−32x+1;y=x+3−x+1 và y=3x+22x. Có bao nhiêu hàm số mà đồ thị hàm số có tiệm cận ngang là đường thẳng y=2?
Giá trị lớn nhất của hàm số y=−x2+2x bằng
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên:
a) Hàm số có giá trị cực tiểu bằng 1. |
|
b) Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng −1. |
|
c) Hàm số đạt cực đại tại x=0 và đạt cực tiểu tại x=1. |
|
d) Hàm số có đúng một cực trị. |
|
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
a) Phương trình 2f(x)=5 có 3 nghiệm. |
|
b) Hàm số đồng biến trên khoảng (−3;5). |
|
c) Giá trị lớn nhất của hàm số trên [−1;2] bằng 1. |
|
d) Hàm số đã cho có 2 cực trị. |
|
Chi phí nhiên liệu của một chiếc tàu chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng mỗi giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v=10 km/h thì phần thứ hai bằng 30 nghìn đồng mỗi giờ.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Khi vận tốc v=10 (km/h) thì chi phí nguyên liệu cho phần thứ nhất trên mỗi km đường sông là 48000 đồng. |
|
b) Hàm số xác định tổng chi phí nguyên liệu trên mỗi km đường sông với vận tốc x km/h là f(x)=x480+0,03x3. |
|
c) Khi vận tốc v=30 km/h thì tổng chi phí nguyên liệu trên mỗi km đường sông là 43000 đồng. |
|
d) Vận tốc của tàu để tổng chi phí nguyên liệu trên mỗi km đường sông nhỏ nhất là v=20 km/h. |
|
Một vật nặng O được kéo từ ba hướng như hình vẽ và chịu tác dụng của ba lực F1,F2,F3, có độ lớn lần lượt là 24 N, 12 N, 6 N. Biết góc tạo bởi hai lực F1,F2 là 120∘ và lực thứ ba vuông góc với hai lực đầu tiên.
Trong đó điểm D là đỉnh của hình bình hành OBDA và E là đỉnh của hình bình hành OCED.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) BO+BA=BD. |
|
b) OE=OA+OB+OC. |
|
c) Độ dài vectơ OD là 127. |
|
d) Độ lớn hợp lực tác dụng vào vật O là 613 N. |
|
Từ một miếng tôn có hình dạng là một nửa hình tròn bán kính R=3, người ta cắt ra một miếng hình chữ nhật MNPQ như mô tả trong hình vẽ.
Diện tích lớn nhất có thể có của hình chữ nhật nêu trên là bao nhiêu (đơn vị diện tích)? (Làm tròn kết quả đến chữ số hàng đơn vị)
Trả lời:
Một chất điểm chuyển động theo quy luật và quãng đường di chuyển được sau t giây được tính theo công thức S(t)=−3t3+243t2 (m). Vận tốc v (m/s) của chuyển động đạt giá trị lớn nhất khi t bằng bao nhiêu giây?
Trả lời:
Hình vẽ trên minh hoạ một chiếc đèn được treo cách trần nhà là 0,5 m, cách hai tường lần lượt là 1,2 m và 1,6 m. Hai bức tường vuông góc với nhau và cùng vuông góc với trần nhà. Người ta di chuyển chiếc đèn đó đến vị trí mới cách trần nhà là 0,4 m, cách hai tường đều là 1,5 m. Vị trí mới của bóng đèn cách vị trí ban đầu là bao nhiêu mét? (Làm tròn kết quả đến chữ số thập phân thứ hai)
Trả lời:
Người ta muốn làm một cái bể dạng hình hộp chữ nhật không nắp (như hình vẽ) có thể tích bằng 1 m3. Chiều cao của bể là 5dm, các kích thước khác là x m, y m với x>0 và y>0. Diện tích toàn phần của bể (không kể nắp) là hàm số S(x) trên khoảng (0;+∞).
Đường tiệm cận xiên của đồ thị hàm số S(x) là đường thẳng y=ax+b. Tính P=a2+b2.
Trả lời:
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Đồ thị hàm số y=f′(x) như hình vẽ sau.
Số điểm cực trị của hàm số y=f(x)+2x là bao nhiêu?
Trả lời:
Biết rằng hàm số y=3x3+3(m−1)x2+9x+1 nghịch biến trên (x1;x2) và đồng biến trên các khoảng còn lại của tập xác định. Nếu ∣x1−x2∣=6 thì tổng các giá trị m thỏa mãn yêu cầu là bao nhiêu?
Trả lời: