Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra cuối học kì I - lớp 12 bộ sách Kết nối tri thức SVIP
Cho hàm số y=f(x) xác định trên R, có đồ thị như hình vẽ. Mệnh đề nào sau đây đúng?
Hàm số nào sau đây đồng biến trên R?
Cho hàm số y=f(x) liên tục trên R và có bảng xét dấu của f′(x) như sau:
Số điểm cực đại của hàm số đã cho là
Đường tiệm cận ngang của đồ thị hàm số y=1+x+22x+1 có phương trình là
Trong không gian với hệ trục tọa độ Oxyz, cho a=(2;−3;3),b=(0;2;−1),c=(3;−1;5). Tọa độ của vectơ u=2a+3b−2c là
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A,B với OA=(2;−1;3),OB=(5;2;−1). Tọa độ của vectơ AB là
Thời gian truy cập Internet mỗi buổi tối của một số học sinh được cho trong bảng sau:
Thời gian (phút) | Số học sinh |
[9,5;12,5) | 3 |
[12,5;15,5) | 12 |
[15,5;18,5) | 15 |
[18,5;21,5) | 24 |
[21,5;24,5) | 2 |
Khoảng biến thiên của mẫu số liệu trên là
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;−3) và B(−3;4;5). Tọa độ trung điểm I của đoạn thẳng AB là
Cho hàm số y=3(x2−4)2 có đồ thị như hình vẽ sau.
Khoảng nghịch biến của hàm số trên là
Đồ thị hàm số y=x−32x−1 là hình nào trong các hình dưới đây?




Gọi x1, x2 là các điểm cực trị của hàm số y=31x3−21mx2−4x−10. Giá trị lớn nhất của biểu thức S=(x12−1)(x22−9) là
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;−1), B(2;−1;3), C(−2;3;3). Điểm D(a;b;c) là đỉnh thứ tư của hình bình hành ABCD, khi đó P=a2+b2−c2 có giá trị bằng
Cho hàm số y=f(x) liên tục và có đồ thị trên đoạn [−2;4] như hình vẽ.
a) Trên đoạn [−2;4], đồ thị hàm số y=f(x) có 2 điểm cực trị. |
|
b) Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;2] là −2. |
|
c) Giá trị lớn nhất của hàm số y=f(x) trên đoạn [1;4] là −4. |
|
d) Hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;4] là 11. |
|
Thời gian chạy tập luyện cự li 100 m của hai vận động viên được cho trong bảng sau:
Thời gian (giây) | Số lần chạy của A | Số lần chạy của B |
[10;10,3) | 2 | 3 |
[10,3;10,6) | 10 | 7 |
[10,6;10,9) | 5 | 9 |
[10,9;11,2) | 3 | 6 |
a) Thời gian trung bình của vận động viên A lớn hơn thời gian trung bình của vận động viên B. |
|
b) Phương sai của mẫu số liệu thời gian chạy của vận động viên A nằm lớn hơn 0,05. |
|
c) Độ lệch chuẩn của mẫu số liệu thời gian chạy của vận động viên B nhỏ hơn 0,3. |
|
d) Dựa trên độ lệch chuẩn, vận động viên A có thành tính luyện tập ổn định hơn vận động viên B. |
|
Cho tứ diện ABCD. Các điểm M,N,I lần lượt là trung điểm của AB, CD, MN và G là trọng tâm tam giác BCD.
a) MC+MD=4MN. |
|
b) IB+IC+ID=3IG. |
|
c) AD+BC=2MN. |
|
d) 2IG+IA=0. |
|
Cho hàm số f(x)=x−2−2x+3.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số đồng biến trên R\{2}. |
|
b) Đồ thị hàm số cắt trục tung tại điểm M(0;2−3). |
|
c) Đồ thị hàm số y=f(x) cắt đường thẳng y=x−2m tại hai điểm phân biệt khi [m>3m<1. |
|
d) Đồ thị hàm số y=f(x) cắt đường thẳng y=x+2 tại hai điểm phân biệt M và N. Biết I là trung điểm của đoạn thẳng MN. Khi đó hoành độ của điểm I là 1. |
|
Một cốc chứa 20 ml dung dịch KOH (Potassium Hydroxide) với nồng độ 100 mg/ml và một bình chứa dung dịch KOH khác với nồng độ 10 mg/ml. Lấy x (ml) ở bình trộn vào cốc ta được dung dịch KOH có nồng độ C(x). Coi C(x) là hàm số xác định với x≥0. Khi x∈[5;15], nồng độ của dung dịch KOH đạt giá trị lớn nhất bằng bao nhiêu mg/ml?
Trả lời: mg/ml
Cho hàm số y=31x3−(m+1)x2+m(m+2)x+2016. Có bao nhiêu giá trị thực của tham số m∈[−10;10] để hàm số đồng biến trên khoảng (3;7)?
Trả lời:
Có bao nhiêu giá trị nguyên dương của tham số m để đồ thị hàm số y=x+12x+m cắt đường thẳng y=1−x tại hai điểm phân biệt?
Trả lời:
Một công ty kinh doanh bất động sản có 20 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 2 triệu đồng/ tháng thì tất cả các căn hộ đều có người thuê. Nhưng cứ mỗi lần tăng giá cho thuê mỗi căn hộ thêm 200 nghìn đồng/ tháng thì có thêm một căn hộ bị bỏ trống. Công ty nên cho thuê mỗi căn hộ bao nhiêu tiền một tháng để tổng số tiền thu được là lớn nhất?
Trả lời:
Có ba lực cùng tác động vào một vật. Hai trong ba lực này hợp với nhau một góc 100∘ và có độ lớn lần lượt là 25 N và 12 N. Lực thứ ba vuông góc với mặt phẳng tạo bởi hai lực đã cho và có độ lớn 4 N. Tính độ lớn của hợp lực của ba lực trên. (làm tròn đến hàng đơn vị)
Trả lời:
Cho bảng mẫu số liệu ghép nhóm sau:
Nhóm | Tần số |
[20;26) | 7 |
[26;32) | 9 |
[32;38) | 5 |
[38;44) | 4 |
[44;50) | 11 |
Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên. (Làm tròn kết quả đến chữ số hàng phần trăm)
Trả lời: