Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:

💯 Ôn tập và kiểm tra chương III SVIP
Cho tam giác ABC có AB=16,CA=21,A=60∘. Độ dài cạnh BC là
Cho tam giác ABC. Khẳng định nào sau đây sai?
Đẳng thức nào sau đây sai?
Cho hai góc nhọn α và β phụ nhau. Hệ thức nào sau đây sai?
Để đo khoảng cách từ một điểm A trên bờ sông đến một cái cây cổ thụ (C) trên cù lao ở giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy nhau và nhìn thấy C, người ta đo được AB=50m, α=CAB=41o, β=CBA=66o. Khoảng cách AC gần nhất với giá trị nào sau đây?
Áp dụng công thức Hê rông để tính diện tích. Áp dụng công thức S=4Rabc⇒R=4Sabc trong đó a, b, c là ba cạnh của tam giác và R là bán kính đường tròn ngoại tiếp.
Một tam giác có ba cạnh a = 3, b = 4, c = 5. Bán kính đường tròn ngoại tiếp R của tam giác bằng
Tam giác ABC có AB=6,AC=3,BAC=30o. Diện tích tam giác ABC bằng
Tam giác ABC vuông cân tại A có AB=AC=a. Đường trung tuyến BM có độ dài là
Cho hình thoi ABCD cạnh bằng 1 cm và có BAD=60∘. Độ dài cạnh AC bằng
Tam giác ABC vuông tại A có B=30∘. Khẳng định nào sau đây sai?
Giá trị biểu thức P=sin30∘cos15∘+sin150∘cos165∘ bằng
Chọn hệ thức đúng được suy ra từ hệ thức cos2α+sin2α=1.
Từ vị trí A người ta quan sát một cây cao (hình vẽ). Biết AH⊥HB,AH=4 m, HB=20 m, BAC=45∘. Chiều cao của cây gần nhất với giá trị nào dưới đây?
Tam giác ABC vuông tại A có AB=6 cm, BC=10 cm. Bán kính của đường tròn nội tiếp tam giác đã cho là
Tam giác ABC vuông tại A có AB=AC=30 cm. Hai đường trung tuyến BF và CE cắt nhau tại G. Diện tích tam giác GFC bằng
Tam giác ABC có BC=a, CA=b, AB=c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì diện tích của tam giác mới được tạo nên bằng
Cho tanα=4. Tính giá trị biểu thức P=−sinα+cosα2sinα−2cosα.
Cho tam giác ABC. Giá trị biểu thức P=sinA.cos(B+C)+cosA.sin(B+C) bằng
Cho biết sinα−cosα=51. Giá trị của P=sin4α+cos4α bằng
Cho biết cosα+sinα=31. Giá trị của P=tan2α+cot2α bằng
Cho góc xOy có số đo 30∘. Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB=1. Độ dài lớn nhất của đoạn OB bằng
Tam giác ABC có AB=c,BC=a,CA=b và ba đường trung tuyến ma,mb,mc. Gọi G là trọng tâm của tam giác. Cho hai mệnh đề
(1) ma2+mb2+mc2=43(a2+b2+c2);
(2) GA2+GB2+GC2=31(a2+b2+c2).
Xét hai mệnh đề trên,
Tam giác ABC có BC=a và CA=b. Tam giác ABC có diện tích lớn nhất khi góc C bằng
Cho góc xOy=30∘. Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB=1. Khi OB có độ dài lớn nhất thì độ dài của đoạn OA bằng
Bán kính đường tròn ngoại tiếp tam giác ABC biết AB=12 và cot(A+B)=31 bằng