![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Chứng minh rằng:
(y-z)/(x-y)(x-z) + (z-x)/(y-z)(y-x) + (x-y)/(z-x)(z-y) = 2/(x-y) + 2/(y-z) + 2/(z-x)
![](https://rs.olm.vn/images/avt/0.png?1311)
Chứng minh rằng:
(y-z)/(x-y)(x-z) + (z-x)/(y-z)(y-x) + (x-y)/(z-x)(z-y) = 2/(x-y) + 2/(y-z) + 2/(z-x)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Từ \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=2\)
\(\Rightarrow (x+y+z)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{xy}{x+z}+\frac{xz}{x+y}+\frac{xy}{y+z}+\frac{y^2}{x+z}+\frac{zy}{x+y}+\frac{xz}{y+z}+\frac{zy}{x+z}+\frac{z^2}{x+y}=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{xy+zy}{x+z}+\frac{xz+yz}{x+y}+\frac{xy+xz}{y+z}=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+y+z+x=2(x+y+z)\)
\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=x+y+z\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(z+x-y\right)^2.\left(z+x-y\right).2\)
có ỹ nghĩa j hả bạn
đề bài ko có sao làm
chuyển sang dạng đa thức của bài bất đẳng thức