K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

Bạn ơi viết đề đầy đủ được không ?

27 tháng 11 2022

a: \(=\dfrac{4x^2+4x+1-4x^2+4x-1}{\left(2x+1\right)\left(2x-1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)

\(=\dfrac{8x\cdot5}{4x\left(2x+1\right)}=\dfrac{10}{2x+1}\)

b: \(=\left(\dfrac{1}{x^2+1}+\dfrac{x-2}{x+1}\right):\dfrac{1+x^2-2x}{x}\)

\(=\dfrac{x+1+x^3+x-2x^2-2}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{x^3-2x^2+2x-1}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{\left(x-1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{x\left(x^2-x+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)

c: \(=\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{1}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)

\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{2}{\left(x-1\right)}\)

\(=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)

16 tháng 12 2016

a ) \(\left(x+1\right)\left(x-2\right)=x^2-2x+x-2=x^2-x-2\)

b ) \(\left(4x^4y^4-12x^2y^2\right):4x^2y^2=x^2y^2-3\)

c ) \(\frac{3x^2-1}{2x}+\frac{x^2+1}{2x}=\frac{3x^2-1+x^2+1}{2x}=\frac{4x^2}{2x}=2x\)

d ) \(\frac{x^2}{x-1}+\frac{2x}{1-x}+\frac{1}{x-1}=\left(\frac{x^2}{x-1}+\frac{1}{x-1}\right)+\frac{2x}{1-x}\)

                                                     \(=\frac{x^2+1}{x-1}+\frac{2x}{1-x}=\frac{x^2+1}{x-1}+\frac{-2x}{x-1}=\frac{x^2+1-2x}{x-1}=\frac{\left(x-1\right)^2}{x-1}=x-1\)

16 tháng 12 2016

a)   .......=x2-x-2

b)   .........=x2y2-3

c) .......=(3x2-1+x2+1)/2x=4x2/2x=2x

d) x/(x-1)+(-2x)/(x-1)+1/(x-1)=(x2-2x+1)/(x-1)=(x-1)2/(x-1)=x-1

e)...

x-y=4

=> x2-2xy+y2=16

 <=> 106-2xy =16  (vì x2+y2 =106)

=>xy=(106-16)/2=45

ta có   x3 -y=(x-y)(x2+xy+y)

=4(106+45)=604

11 tháng 3 2017

d)Áp dụng BĐT AM-GM

\(x^2+1\ge2\sqrt{x^2}=2x\)

\(y^2+4\ge2\sqrt{4y^2}=4y\)

\(z^2+9\ge2\sqrt{9z^2}=6z\)

Nhân theo vế ta có:

\(VT=\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge2x\cdot4y\cdot6z=48xyz=VP\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x^2+1=2x\\y^2+4=4y\\z^2+9=6z\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\\\left(z-3\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

e)Áp dụng BĐT AM-GM ta có:

\(x+1\ge2\sqrt{x}\)

\(y+1\ge2\sqrt{y}\)

\(x+y\ge2\sqrt{xy}\)

Nhân theo vế ta có:

\(VT=\left(x+1\right)\left(y+1\right)\left(x+y\right)\ge2\sqrt{x}\cdot2\sqrt{x}\cdot2\sqrt{xy}=8xy=VP\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x+1=2\sqrt{x}\\y+1=2\sqrt{y}\\x+y=2\sqrt{xy}\left(x+y\ge0\right)\end{matrix}\right.\)\(\Rightarrow x=y=0\)

11 tháng 3 2017

mấy câu còn lại áp dụng HĐT thôi, khá dễ !!

10 tháng 12 2022

1: \(=\dfrac{x^2\cdot4xy^2}{x^2}=4xy^2\)

2: \(=\dfrac{3x\left(x-2\right)}{-\left(x-2\right)}=-3x\)

3: \(=\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{x^2+2x+4}=x-2\)

6: \(\dfrac{5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2}{\left(x-y\right)^2}=5\left(x-y\right)^2-3\left(x-y\right)+4\)

 

22 tháng 8 2018

\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)

                                                                  \(=2x^3+16x^2-5x\)

                                                                  \(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)

                                                                  \(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)

26 tháng 12 2018

1,4x2.(5x3+2x-1)

=4x2.5x3+4x2.2x-4x2.1

20x5+8x3-4x2

2,4x3y2:x2

=4xy2

3,(15x2y3-10x3y3+6xy):5xy

15x2y3:5xy-10x3y3:5xy+6xy:5xy

3xy2-2x2y2+\(\dfrac{6}{5}\)

26 tháng 12 2018

cảm ơn bạn nhé ^^

13 tháng 12 2022

1: \(=20x^5+8x^3-4x^2\)

2: \(=4xy^2\)

3: \(=3xy^2-2x^2y^2+\dfrac{6}{5}\)

4: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)

5: \(=\dfrac{7}{2x}+\dfrac{11}{3y^2}=\dfrac{21y^2+22x}{6xy^2}\)

6: \(=\dfrac{4x^2-7x+3}{\left(4x-7\right)\left(x+2\right)}\)

7: \(=\dfrac{3x+3y-2x^3+2x^2y}{\left(x-y\right)\left(x+y\right)}\)

8: \(=\dfrac{1}{2}x^2y^2\left(4x^2-y^2\right)=2x^4y^2-\dfrac{1}{2}x^2y^4\)

9: \(=\left(x-\dfrac{1}{4}\right)\left(4x-1\right)=4\left(x-\dfrac{1}{4}\right)^2=4\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)

\(=4x^2-2x+\dfrac{1}{4}\)

10: \(=\dfrac{3x^2+6-x}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)

11: \(=\dfrac{x+1}{2}-\dfrac{3}{x-1}\)

\(=\dfrac{x^2-7}{2\left(x-1\right)}\)

12: \(=\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{x}{x+y}\)

15:=x^3-y^3+2

13 tháng 12 2022

1: \(=20x^5+8x^3-4x^2\)

2: \(=4xy^2\)

3: \(=3xy^2-2x^2y^2+\dfrac{6}{5}\)

4: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)

5: \(=\dfrac{7}{2x}+\dfrac{11}{3y^2}=\dfrac{21y^2+22x}{6xy^2}\)

6: \(=\dfrac{4x^2-7x+3}{\left(4x-7\right)\left(x+2\right)}\)

7: \(=\dfrac{3x+3y-2x^3+2x^2y}{\left(x-y\right)\left(x+y\right)}\)

8: \(=\dfrac{1}{2}x^2y^2\left(4x^2-y^2\right)=2x^4y^2-\dfrac{1}{2}x^2y^4\)

9: \(=\left(x-\dfrac{1}{4}\right)\left(4x-1\right)=4\left(x-\dfrac{1}{4}\right)^2=4\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)

\(=4x^2-2x+\dfrac{1}{4}\)

10: \(=\dfrac{3x^2+6-x}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)

11: \(=\dfrac{x+1}{2}-\dfrac{3}{x-1}\)

\(=\dfrac{x^2-7}{2\left(x-1\right)}\)

12: \(=\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{x}{x+y}\)

15:=x^3-y^3+2