K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2021

Ta có (y + 3)(y2 - 3y + 9) - y(y2 - 3) = 18

<=> y3 + 27 - y3 + 3y = 18

<=> 3y + 27 = 18

<=> 3y = -9

<=> y = -3

Vậy y = -3 là nghiệm phương trình

12 tháng 9 2017

Bn lam dk chua Anh

1 tháng 10 2017

Ta có : x4 - y4 

= (x2)2 - (y2)2 

= (x2 - y2)(x2 + y2)

= (x - y)(x + y)(x2 + y2)

b) 9(x - y)2 - 4(x + y)2

= [3(x - y) - 4(x + y)][3(x - y) + 4(x + y)]

= [3x - 3y - 4x - 4y][3x - 3y + 4x + 4y]

= (-x - 7y)(x + y) 

1 tháng 10 2017

e.\(x^4+2x^2+1=\left(x^2+1\right)^2\)

c.\(x^2-9y^2=\left(x-3y\right)\left(x+3y\right)\)

f.\(-x^2-2xy-y^2+1=-\left[\left(x+y\right)^2-1\right]=-\left(x+y-1\right)\left(x+y+1\right)=\left(x-y+1\right)\left(x+y+1\right)\)

g.\(x^3-x^2-x+1==x^2\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^2-1\right)=\left(x-1\right)^2\left(x+1\right)\)

h.\(\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)

i.\(\left(x+y\right)^3-x^3-y^3=\left(x+y\right)^3-\left(x^3+y^3\right)=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-\left(x^2-xy+y^2\right)\right]=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)

\(=3xy\left(x+y\right)\)

tíck mình nha bn thanks !!!!!

29 tháng 6 2017

Bài 2: Ta có :\(x^3-6x^2y+12xy^2-8y^3=-8\)

\(\Leftrightarrow\left(x-2y\right)^3=\left(-2\right)^3\)

\(\Rightarrow x-2y=-2\) (*)

\(3x^2-12xy+12y^2=3.\left(x^2-4xy+4y^2\right)=3.\left(x-2y\right)^2\)

Thay (*) vào bt ta được: \(3.\left(-2\right)^2=12\)

29 tháng 6 2017

Bài 3: Ta có: a+b=13

=> (a+b)3=2197

<=> a3 + b3 + 3ab.(a+b)=2197

<=> a3 + b3 +3.9.13=2197

=> a3 + b3 =1846

4 tháng 8 2015

P(x,y) = x^3 - 3x^2 + 3x^2y + 3xy^2 + y^3 - 3y^2 - 6xy + 3x + 3y

         = ( x^3 + 3x^2y + 3xy^2 + y^3 ) - ( 3x^2 + 3y^2 + 6xy ) + ( 3x + 3y)

         = ( x+  y)^3 - 3 ( x^2 + 2xy + y^2) + 3 ( x+  y)

         = ( x+  y)^3 - 3 ( x+ y)^2 + 3(x +y)

Thay x+  y = 101 ta có :

        = 101^3 - 3.101^2 + 3.101

         = 101 . ( 101^2 - 3.101 + 3 )

         = 101 .9901

        =  1000001

1000001

chắc chắn 100%

21 tháng 10 2019

ta có:

a) (x2 - 3x + xy - 3y) : (x + y)

= [x(x - 3) + y(x - 3)] : (x + y)

= (x + y)(x - 3) : (x + y)

= x - 3

b) (x2 - y2 + 6x + 9) : (x + y + 3)

= [(x2 + 6x + 9) - y2] : (x + y + 3)

= [(x + 3)2 - y2] : (x + y + 3)

= (x + y + 3)(x - y + 3) : (x + y + 3)

= x - y + 3

17 tháng 8 2018

Bài 1:

a) \(25\left(x+2y\right)^2-16\left(2x-y\right)^2\)

\(=\left[5\left(x+2y\right)\right]^2-\left[4\left(2x-y\right)\right]^2\)

\(=\left[5\left(x+2y\right)-4\left(2x-y\right)\right]\left[5\left(x+2y\right)+4\left(2x-y\right)\right]\)

\(=\left(5x+10y-8x+4y\right)\left(5x+10y+8x-4y\right)\)

\(=\left(14y-3x\right)\left(13x+6y\right)\)

b) \(0,25\left(x-2y\right)^2-4\left(x+y\right)^2\)

\(=\left[\dfrac{1}{2}\left(x-2y\right)\right]^2-\left[2\left(x+y\right)\right]^2\)

\(=\left[\dfrac{1}{2}\left(x-2y\right)-2\left(x+y\right)\right]\left[\dfrac{1}{2}\left(x-2y\right)+2\left(x+y\right)\right]\)

\(=\left(\dfrac{1}{2}x-y-2x-2y\right)\left(\dfrac{1}{2}x-y+2x+2y\right)\)

\(=\left(-\dfrac{3}{2}x-3y\right)\left(\dfrac{5}{2}x+y\right)\)

\(=-3\left(\dfrac{1}{2}x+y\right)\left(\dfrac{5}{2}x+y\right)\)

c) \(\dfrac{4}{9}\left(x-3y\right)^2-0,04\left(x+y\right)^2\)

\(=\left[\dfrac{2}{3}\left(x-3y\right)\right]^2-\left[\dfrac{1}{5}\left(x+y\right)\right]^2\)

\(=\left[\dfrac{2}{3}\left(x-3y\right)-\dfrac{1}{5}\left(x+y\right)\right]\left[\dfrac{2}{3}\left(x-3y\right)+\dfrac{1}{5}\left(x+y\right)\right]\)

\(=\left(\dfrac{2}{3}x-2y-\dfrac{1}{5}x-\dfrac{1}{5}y\right)\left(\dfrac{2}{3}x-2y+\dfrac{1}{5}x+\dfrac{1}{5}y\right)\)

\(=\left(\dfrac{7}{15}x-\dfrac{11}{5}y\right)\left(\dfrac{13}{15}x-\dfrac{9}{5}y\right)\)

\(=\dfrac{1}{5}\left(\dfrac{7}{3}x-11y\right).\dfrac{1}{5}\left(\dfrac{13}{3}x-9y\right)\)

\(=\dfrac{1}{25}\left(\dfrac{7}{3}x-11y\right)\left(\dfrac{13}{3}x-9y\right)\)

d) \(-25x^2+30x-9\)

\(=-\left(25x^2-30x+9\right)\)

\(=-\left[\left(5x\right)^2-2.5x.3+3^2\right]\)

\(=-\left(5x-3\right)^2\)

Bài 2:

a) \(x^3y^2-x^2y^3-2x+2y\)

\(=x^2y^2\left(x-y\right)-2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2y^2-2\right)\)

Thay x = -1 và y = -2 vào ta được

\(=\left[-1-\left(-2\right)\right]\left[\left(-1\right)^2\left(-2\right)^2-2\right]\)

\(=1\left(4-2\right)\)

\(=2\)

b) \(5x^2-3x+3y-5y^2\)

\(=5\left(x^2-y^2\right)-3\left(x-y\right)\)

\(=5\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)

Thay x = 3 và y = 1 vào ta được

\(=5\left(3-1\right)\left(3+1\right)-3\left(3-1\right)\)

\(=5.2.4-3.2\)

\(=34\)

31 tháng 7 2018

a) \(\left(9m^3-5p^2n\right)^2\)

b) \(\left(x^4-y^2\right)^3\)

c) \(\left(4x^5-3x^3\right)^3\)

d: \(=\left(x+y\right)^3+3\left(x+y\right)^2+3\left(x+y\right)+1\)

\(=\left(x+y+1\right)^3\)

a: \(=\left(9m^3-5p^2n\right)^2\)

b: \(=\left(x^4-y^2\right)^3\)

c: \(=\left(4x^5-3x^3\right)^3\)