Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\sqrt{5}\left(\frac{1}{\sqrt{5}}sinx-\frac{2}{\sqrt{5}}cosx\right)=\sqrt{5}sin\left(x-a\right)\) với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{1}{\sqrt{5}}\)
Do \(-1\le sin\left(x-a\right)\le1\Rightarrow-\sqrt{5}\le a\le\sqrt{5}\)
\(y_{max}=\sqrt{5}\) ; \(y_{min}=-\sqrt{5}\)
ĐKXĐ:
a.
\(sin3x-sinx\ne0\)
\(\Leftrightarrow sin3x\ne sinx\Leftrightarrow\left\{{}\begin{matrix}3x\ne x+k2\pi\\3x\ne\pi-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)
b.
\(cos3x-cosx\ne0\Leftrightarrow cos3x\ne cosx\)
\(\Leftrightarrow\left[{}\begin{matrix}3x\ne x+k2\pi\\3x\ne-x+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ne k\pi\\x\ne\frac{k\pi}{2}\end{matrix}\right.\) \(\Leftrightarrow x\ne\frac{k\pi}{2}\)
y xác định \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2cosx+3}{sinx+1}\ge0\left(1\right)\\sinx+1\ne0\left(2\right)\end{matrix}\right.\)
`(1) <=> 2cosx+3>=sinx+1`
`<=>2cosx+2>=sinx `
Vì `2cosx+2>sin^2x+cos^2x>=sinx`
`=> 2cosx+2>=sinx forall x`
`(2) <=> x \ne -π/2 +k2π`
Vậy `D=RR \\ {-π/2 + k2π} (k \in ZZ)`.
1. Do \(\cos x+2>0\forall x\in R\) \(\Rightarrow\) Hàm số xác định \(\forall x\in R\)
\(y=\dfrac{\sin x+1}{\cos x+2}\)
\(\Leftrightarrow\)\(y\cos x-\sin x=1-2y\)
pt có nghiệm \(\Leftrightarrow y^2+\left(-1\right)^2\ge\left(1-2y\right)^2\)
\(\Leftrightarrow3y^2-4y\le0\)
\(\Leftrightarrow0\le y\le\dfrac{4}{3}\)
2. \(y=\dfrac{\cos x+2\sin x+3}{2\cos x-\sin x+4}\)
\(\Leftrightarrow\left(2y-1\right)\cos x-\left(y+2\right)\sin x=3-4y\)
pt có nghiệm \(\Leftrightarrow\left(2y-1\right)^2+\left(y+2\right)^2\ge\left(3-4y\right)^2\)
\(\Leftrightarrow11y^2-24y+4\le0\)
\(\Leftrightarrow\dfrac{2}{11}\le y\le2\)
kiểm tra giúp mình xem có sai sót gì không...
Tìm giá trị lớn nhất và nhỏ nhất | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam