Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
– Ngày 26 tháng 3 là thứ Sáu.
– Ngày 1 tháng 6 là thứ Ba.
– Ngày 19 tháng 8 là thứ Năm.
– Ngày 20 tháng 11 là thứ Bảy.
- Ngày 26 tháng 3 là thứ 6
- Ngày 1 tháng 6 là thứ 3
- Ngày 19 tháng 8 là thứ 5
- Ngày 20 tháng 11 là thứ 7
Bài làm
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{4}=\frac{x+y}{5+4}=\frac{27}{9}=3\)
Do đó: \(\hept{\begin{cases}\frac{x}{5}=3\\\frac{y}{4}=3\end{cases}\Rightarrow\hept{\begin{cases}x=15\\y=12\end{cases}}}\)
Vậy x = 15, y = 12
# Học tốt #
1/
\(P=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{2}{xy+yz+xz}+\frac{1}{xy+yx+xz}+\frac{2}{x^2+y^2+z^2}\)\
\(\ge\frac{2}{\frac{\left(x+y+z\right)^2}{3}}+\frac{\left(2\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=14\)
Ta thấy dấu bằng xảy ra khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\\frac{1}{xy+yz+xz}=\frac{\sqrt{2}}{x^2+y^2+z^2}\end{cases}}\)
Hai điều kiện không thể đồng thời xảy ra nên không tồn tại dấu bằng. Vậy P > 14
1) vì x,y,z là các số bất kì, ta có bđt luôn đúng: (x+y+z)2 \(\ge\)3(xy+yz+zx)
vì x+y+z=1 nên suy ra \(\frac{1}{xy+yz+zx}\ge3\)
đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
ta có \(\frac{1}{3\left(xy+yz+zx\right)}+\frac{1}{x^2+y^2+z^2}\ge\frac{4}{\left(x+y+z\right)^3}=4\)
\(\Rightarrow\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{4}{2\left(xy+yz+zx\right)}+\frac{2}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\)\(\ge2\cdot3+2\cdot4=14\)
đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\2\left(xy+yz+zx\right)=x^2+y^2+z^2\end{cases}}\)
hệ này vô nghiệm nên bât không trở thành đẳng thức
vậy bất đẳng thức được chứng minh
2) ta có \(\frac{x^3}{y^3+8}+\frac{y+2}{27}+\frac{y^2-2y+4}{27}\ge\frac{x}{3}\Rightarrow\frac{x^3}{y^3+8}\ge\frac{9x+y-y^2-6}{27}\)
tương tự ta có: \(\frac{y^3}{z^3+8}\ge\frac{9y+z-z^2-6}{27},\frac{z^3}{x^3+8}\ge\frac{9z+x-x^2-6}{27}\)nên
\(VT\ge\frac{10\left(x+y+z\right)-\left(x^2+y^2+z^2\right)-18}{27}=\frac{12-\left(x^2+y^2+z^2\right)}{27}\)mà ta lại có
\(\frac{12-\left(x^2+y^2+z^2\right)27}{27}=\frac{3+\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{27}=\frac{1}{9}+\frac{2}{27}\left(xy+yz+zx\right)\)
từ đó ta có điều phải chứng minh, đẳng thức xảy ra khi x=y=z=1
Bạn ơi!
Đây không phải bài toán lớp 1 đâu mà đây là bài toán lớp 6
Bài toàn này liên quan đến ước chung lớn nhất nha bạn!
Đây là lời giải của bài toán:
Gọi số tổ chia được nhiều nhất là a (a \(\varepsilon\)N*)
Theo bài ta có:
a=ƯCLN(24;108)
Có: 24=23x3
108=22x33
ƯCLN(24;108)=22x3=12
Vậy có thể chia nhiều nhất 24 bác sĩ và 108 y tá thành 12 tổ.
a) Trong một tuần lễ em đi học vào 5 ngày là các ngày: Thứ Hai; thứ Ba; thứ Tư; thứ Năm; thứ Sáu.
b) Trong một tuần lễ em được nghỉ 2 ngày là các ngày: Thứ Bảy và Chủ Nhật.
y + y + y = 27
=> 3 x y = 27
=> y = 9
y + y + y = 27
<=> 3y = 27
<=> y = 27 : 3
<=> y = 9