K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 10 2019

\(y=-3x^2-5x+10\)

À mà thôi, nhìn cái đoạn cần xét \(\left[2;-3\right]\) là thấy đề sai rồi

30 tháng 10 2019

là sao v ạ ..?

NV
30 tháng 10 2019

Bạn viết đề có nhầm ko nhỉ? Ngoặc đầu tiên có bình phương mới hợp lý, chứ ko có bình phương thì quá dễ?

\(y=-3x^2-6x+10\)

\(-\frac{b}{2a}=-1\in\left[-2;3\right]\)

\(y\left(-2\right)=10\) ; \(y\left(-1\right)=13\); \(y\left(3\right)=-35\)

\(\Rightarrow y_{max}=y\left(-1\right)=13\) ; \(y_{min}=y\left(3\right)=-35\)

13 tháng 10 2022

a: \(x\in\left[-2;3\right]\)

nên \(\left\{{}\begin{matrix}x^4\in\left[0;81\right]\\x^2\in\left[0;9\right]\end{matrix}\right.\Leftrightarrow x^4+3x^2\in\left[0;108\right]\)

=>\(y\in\left[2;110\right]\)

y=2 khi x=0

y=110 khi \(x^4+3x^2=108\)

=>x^4+12x^2-9x^2-108=0

=>x=3

c: \(y=x\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1-1\)

\(=\left(x^2+3x+1\right)^2-1>=-1\)

Dấu'=' xảy ra khi x^2+3x+1=0

hay \(x\in\left\{\dfrac{-3+\sqrt{5}}{2};\dfrac{-3-\sqrt{5}}{2}\right\}\)

DD
20 tháng 1 2022

\(x^2+y^2\le2x+4y\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2\le5\)

Trong hệ tọa độ \(Oxy\)vẽ đường tròn \(\left(x-1\right)^2+\left(y-2\right)^2=5\)(C) và đường thẳng \(2x+y-F=0\)(d)

\(F=2x+y\)đạt GTNN hay GTLN khi (d) là tiếp tuyến của (C). 

\(I\left(1,2\right)\)là tâm của (C), \(R=\sqrt{5}\)là bán kính của (C).

\(d\left(I,d\right)=\frac{\left|2.1+2-F\right|}{\sqrt{2^2+1^2}}=\frac{\left|F-4\right|}{\sqrt{5}}=\sqrt{5}\Leftrightarrow\orbr{\begin{cases}F=-1\\F=9\end{cases}}\).

Vậy \(minF=-1,maxF=9\).

NV
3 tháng 11 2019

\(x+y=4\Rightarrow y=4-x\)

\(P=2x^2+\left(4-x\right)^2-3x+4-x\)

\(P=3x^2-12x+20\)

Do \(x+y=4\Rightarrow0\le x\le4\)

Xét \(P=f\left(x\right)=3x^2-12x+20\) trên \(\left[0;4\right]\)

\(P\left(0\right)=20\) ; \(P\left(4\right)=20\); \(P\left(-\frac{b}{2a}\right)=P\left(2\right)=8\)

\(\Rightarrow P_{max}=20\) khi \(\left(x;y\right)=\left(0;4\right);\left(4;0\right)\)

\(P_{min}=8\) khi \(x=y=2\)

10 tháng 12 2017

a) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)

b) \(x^2-2x-15=\left(x^2-2x+1\right)-16=\left(x-1\right)^2-4^2=\left(x-1-4\right)\left(x-1+4\right)=\left(x-5\right)\left(x+3\right)\)

c) \(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)

d) \(12x^2y-18xy^2-30y^2=6\left(2x^2y-3xy^2-5y^2\right)\)

e, ntc: x-y

f, đối dấu --> ntc

g, như ý f

h, \(36-12x+x^2=\left(6-x\right)^2=\left(x-6\right)^2\)

i, \(3x^3y^2-6x^2y^3+9x^2y^2=3x^2y^2\left(x-y+3\right)\)

10 tháng 12 2017

thanks

15 tháng 7 2018
https://i.imgur.com/RNmuuOR.jpg