
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, \(\frac{x+3}{y+4}=\frac{3}{4}\)
\(< =>\frac{x+3}{3}=\frac{y+4}{4}< =>\frac{x}{3}+1=\frac{y}{4}+1\)
\(< =>\frac{x}{3}=\frac{y}{4}\)
Theo tinh chat cua day ti so bang nhau ta co
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{21}{7}=3\)
\(=>\hept{\begin{cases}x=3.3=9\\y=4.3=12\end{cases}}\)
a)
\(\frac{x+3}{y+4}=\frac{3}{4}\)
\(\Leftrightarrow\frac{x+3}{3}=\frac{y+4}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{x+3}{3}=\frac{y+4}{4}=\frac{x+y+3+4}{3+4}=\frac{28}{7}=4\)
Do đó
\(\frac{x+3}{3}=4\Rightarrow x+3=12\Rightarrow x=9\)
\(\frac{y+4}{4}=4=>y+4=16\Rightarrow y=12\)

x/3=1/2
x.2=3.1
x.2=3
x=3:2
x=3/2
vậy x=3/2
x/3=9/2
x.2=3.9
x.2=27
x=27:2
x=27/2
vậy x=27/2

Ta có \(x-y=5\Leftrightarrow x=y+5\)
Mà \(\frac{x}{5}=\frac{y}{9}\Leftrightarrow\frac{y+5}{5}=\frac{y}{9}\Leftrightarrow9y+40=5y\Leftrightarrow4y=40\Leftrightarrow y=10\Leftrightarrow x=15\)
chúc bạn học
tốt

a) \(\frac{-3}{x}=\frac{y}{2}\left(x\ne0\right)\)
\(\Leftrightarrow xy=-6\)
<=> x;y thuộc Ư (-6)={-6;-3;-2;-1;1;2;3;6}
Vậy (x;y)=(-6;1);(-2;3);(-3;2);(-1;6) và hoán vị của chúng
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}+\frac{y}{5}=\frac{x+y}{2+5}=\frac{35}{7}=5\)
\(\Leftrightarrow\hept{\begin{cases}x=2\cdot5=10\\y=5\cdot5=25\end{cases}}\)

Đặt 45=9x5
Để A chia hết cho 5 thì y=5 hoặc 0
+ nếu y=5 thì x=2 ( vì để A chia hết cho 9)
+ nếu y=0 thì x=7 ( vì để A chia hết cho 9)
Vậy nếu y=5 thì x=2. nếu y=0 thì x=7
tick nha

a) \(y^{2015}=y^{2020}\)
\(\Leftrightarrow y^{2020}-y^{2015}=0\)
\(\Leftrightarrow y^{2015}.\left(y^5-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y^{2015}=0\\y^5-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)
Vậy ...
b) \(\left(2y-1\right)^{50}=\left(2y-1\right)^1\)
\(\Leftrightarrow\left(2y-1\right)^{50}-\left(2y-1\right)^1=0\)
\(\Leftrightarrow\left(2y-1\right)^1.\left[\left(2y-1\right)^{49}-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2y-1\right)^1=0\\\left(2y-1\right)^{49}-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{2}\\y=1\end{cases}}\)
Vậy...

a)Ta có : \(A=\frac{10^{2014}+5}{10^{2014}-2}\)
=> \(A-1=\frac{10^{2014}+5-\left(10^{2014}-2\right)}{10^{2014}-2}=\frac{7}{10^{2014}-2}\)
Lại có : \(B=\frac{10^{2014}}{10^{2014}-7}\)
=> B - 1 = \(\frac{10^{2014}-\left(10^{2014}-7\right)}{10^{2014}-7}=\frac{7}{10^{2014}-7}\)
Vì : \(\frac{7}{10^{2014}-2}< \frac{7}{10^{2014}-7}\)
nên A - 1 < B - 1
=> A < B
b) Ta có : 4x + 1295 = 6y
=> 6y - 4x = 1295
Với x ; y \(\inℕ\)
=> 4x ; 6y \(\inℕ\)
mà 6y - 4x = 1295 (1)
=> 6y > 4x ; 6y > 1295
Vì 6y > 1295
=> \(y\ge4\)
Ta xét các trường hợp
Nếu \(x;y>0\)
=> 6y ; 4x chẵn
=> 6y - 4x chẵn (loại vì 1295 lẻ)
Nếu x = 0 ; y > 0
Khi đó (1) <=> 6y - 1 = 1295
=> 6y = 1296
=> 6y = 64
=> y = 4 (tm)
Vậy x = 0 ; y = 4
72y + 29y - y = 600
(72 + 29 - 1) * y = 600
100y = 600
y = 600 : 100
y = 6
Vậy y = 6
y . ( 72 + 29 - 1 ) = 600
y . 100 = 600
y = 600 : 100
y = 6
Vậy y = 6