K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

-m+2>0

=>m<2

19 tháng 1 2018

hàm số trên đồng biến khi :

2-m>0

=>m<2

vây hám số đồng bến khi m<2

NV
14 tháng 4 2020

a/ Để hàm số đồng biến khi x>0

\(\Leftrightarrow1-2m>0\Rightarrow m< \frac{1}{2}\)

b/ Để hàm số nghịch biến khi x>0

\(\Leftrightarrow4m^2-9< 0\Leftrightarrow-\frac{3}{2}< m< \frac{3}{2}\)

c/ Để hàm số đồng biến khi x<0

\(\Leftrightarrow m^2-3m< 0\Leftrightarrow0< m< 3\)

d/ Do \(m^2-2m+3=\left(m-1\right)^2+2>0\) ;\(\forall m\)

\(\Rightarrow\) Hàm số đồng biến khi x>0 với mọi m

3 tháng 4 2020
https://i.imgur.com/kCkIul9.jpg

Bài 1: 

a: Để hàm số đồng biến khi x>0 thì m-1>0

hay m>1

b: Để hàm số nghịch biến khi x>0 thì 3-m<0

=>m>3

c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0

hay 0<m<1

19 tháng 2 2022

a, đồng biến khi m - 1 > 0 <=> m > 1 

b, nghịch biến khi 3 - m < 0 <=> m > 3 

c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0 

Ta có m - 1 < m 

\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)

5 tháng 5 2016

đồng biến khi a=(2m+3) >0

nghịch biến khi a=(2m+3) <0

rồi tính ra là ra m

đúng ko ạ

5 tháng 5 2016

khi x>0

đồng biến thì khi 2m+3>0

khi x<0

nghịch biến khi 2m+3>0

25 tháng 12 2023

Bài 1:

Hàm số y=(m-3)x+4 đồng biến trên R khi m-3>0

=>m>3

Hàm số y=(m-3)x+4 nghịch biến trên R khi m-3<0

=>m<3

Bài 4:

a: Vì \(a=3-\sqrt{2}>0\)

nên hàm số \(y=\left(3-\sqrt{2}\right)x+1\) đồng biến trên R

b: Khi x=0 thì \(y=0\left(3-\sqrt{2}\right)+1=1\)

Khi x=1 thì \(y=\left(3-\sqrt{2}\right)\cdot1+1=3-\sqrt{2}+1=4-\sqrt{2}\)

Khi \(x=\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\cdot\sqrt{2}+1=3\sqrt{2}-2+1=3\sqrt{2}-1\)

Khi \(x=3+\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)-1\)

=9-4-1

=9-5

=4

Khi \(x=3-\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)^2-1\)

\(=11-6\sqrt{2}-1=10-6\sqrt{2}\)

\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2-4x_1+5-x_2^2+4x_2-5}{x_1-x_2}\)

\(=\left(x_1+x_2\right)-4\)

Khi x1>2; x2>2 thì x1+x2>4

=>A>0

=>Hàm số đồng biến

Khi x1<2; x2<2 thì x1+x2<4

=>A<0

=>Hàm số nghịch biến

17 tháng 11 2022

\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-3x_1^2+3x_2^2}{x_1-x_2}=-3\left(x_1+x_2\right)\)

Khi x1<0; x2<0 thì x1+x2<0

=>A>0

=>Hàm số đồng biến

Khi x1>0; x2>0 thì x1+x2>0

=>A<0

=>hàm số nghịch biến