Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cô si cho 3 số không âm ta được:
1 = x + y + z \(\ge3.\sqrt[3]{xyz}\) (*)
Do đó, 2 = (x + y) + (y + z) + (z + x) \(\ge3.\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (**)
Dễ thấy 2 vế của (*) và (**) đều không âm nên nhân từng vế của chúng ta được: 2 \(\ge9.\sqrt[3]{A}\)
\(\Rightarrow A\le\left(\frac{2}{9}\right)^3\)
Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)
Vậy ...
Áp dụng: (a + b)² ≥ 4ab Ta có:
(x + y + z)² ≥ 4(x + y)z hay 1 ≥ 4(x + y)z (*) (Vì x + y + z = 1)
=> (x + y)/xyz ≥ 4(x + y)²z/xyz ( Nhân hai vế (*) với (x + y)/xyz)
=> (x + y)/xyz ≥ 4.4xyz/xyz = 16 (vì (x + y)² ≥ 4xy)
Vậy min A = 16 <=> x = y; x + y = z và x + y + z = 1
=> x = y = 1/4; z = 1/2
bn Phùng Gia Bảo nhầm 1 chỗ r nhe
C1: \(A=\frac{x+y+z}{xyz}=\frac{1}{\left(\sqrt[3]{xyz}\right)^3}\ge\frac{1}{\left(\frac{x+y+z}{3}\right)^3}=\frac{1}{\frac{1}{27}}=27\)
C2: \(A=\frac{x+y+z}{xyz}=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\ge\frac{9}{\frac{\left(x+y+z\right)^2}{3}}=\frac{9}{\frac{1}{3}}=27\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\)
A=x^3 +y^3 +z^3+ 2(x/y+z +y/z+x +z/x+y) \(\ge x^3+y^3+z^3+2.\frac{3}{2}\) (bạn vào tìm BĐT nesbit là sẽ cm cái đằng sau >= 3/2)
Áp dụng cô si \(x^3+y^3+z^3\ge3xyz=3\)
===> A\(\ge3+3=6\) khi x=y=z=1
cái này mình nhằm. thay vì bằng 1 nó bằng 11/13 nha. giúp mình với cảm ơn nhiều
x=y=z=rỗng