\(x:y:z=3:7:5\)và \(x^2-3y^2+z^2=198\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

\(x:y:z=3:7:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{5}\)

Đặt \(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{5}=k\Rightarrow x=3k;y=7k;z=5k\)

\(x^2-3y^2+z^2=198\\ \Rightarrow\left(3k\right)^2-3\left(7k\right)^2+\left(5k\right)^2=198\\ \Rightarrow9k^2-147k^2+25k^2=198\\ \Rightarrow-113k^2=198\\ \Rightarrow k^2=\dfrac{-198}{113}\left(vô.lí\right)\)

Vậy ko có x,y,z thỏa mãn đề bài

27 tháng 11 2021

cảm ơn bạn

haha

31 tháng 7 2017

a) Ta thấy:
\(\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\frac{x}{2}\cdot\frac{3}{5}=\frac{y}{3}\cdot\frac{3}{5}\)\(\Rightarrow\frac{3x}{10}=\frac{y}{5}\)
Mà \(\frac{y}{5}=\frac{z}{6}\) nên ta có biểu thức: \(\frac{3x}{10}=\frac{y}{5}=\frac{z}{6}\)    ( 1 )
Biểu thức ( 1 ) tương đương với:
\(\frac{3x}{10}=\frac{3y}{15}=\frac{3z}{18}=\frac{3x+3y+3z}{10+15+18}=\frac{3\left(x+y+z\right)}{43}=\frac{3\cdot43}{43}=3\)
Khi đó:
\(\frac{3x}{10}=3\)                         \(\Rightarrow x=\frac{3\cdot10}{3}=10\)
\(\frac{3y}{15}=3\)\(\Rightarrow\frac{y}{5}=3\) \(\Rightarrow y=3\cdot5=15\)
\(\frac{3z}{18}=3\)\(\Rightarrow\frac{z}{6}=3\) \(\Rightarrow z=3\cdot6=18\)

31 tháng 7 2017

a,  Nhân cả hai vế cho 5, ta được: X/10 = Y/15 

Tương tự ta có:                          Y/15 = Z/18  

Do đó: X/10 = Z/18 (=Y/15)

Theo đề bài, ta có: (X+Y+Z)/(10+15+18) = 43/43 = 1

                            X/10=1 => X=10

                            Y/15=1 => Y=15

                            Z/18=1 => Z=18

                         

25 tháng 6 2019

a) Thiếu đề

b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

 \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)

=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)

Vậy ...

25 tháng 6 2019

Sửa lại xíu :

 \(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)

\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)

a)Từx:y:z=3:5:(−2)=>\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau,ta có

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x-y+3z}{5.3-5+3.\left(-2\right)}=-\dfrac{16}{4}=-4\)

=>x=-12

y=-20

z=8

Vậy...

Các câu sau tương tự

6 tháng 8 2017

2 cách nhé các bạn

5 tháng 11 2017

a)vì\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=\(\dfrac{z}{5}\)=>\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)và 2x+3y+5z=86

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)=\(\dfrac{2x+3y+5z}{6+12+25}\)\(\dfrac{86}{43}\)=2

\(\dfrac{2x}{6}\)=2=>2x=2.6=12=>x=12:2=6

\(\dfrac{3y}{12}\)=2=>3y=12.2=24=>y=24:3=8

\(\dfrac{5z}{25}\)=2=>5z=25.2=50=>z=50:5=10

vậy x=6,y=8,z=10

5 tháng 11 2017

\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)

\(\dfrac{y}{6}\)=\(\dfrac{z}{8}\)=>\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)(2)

từ (1)(2)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)=>\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)và 3x-2y-z=13

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)=\(\dfrac{3x-2y-z}{27-24-16}\)=\(\dfrac{13}{-13}\)=-1

\(\dfrac{3x}{27}\)=-1=>3x=-1.27=-27=>x=-27x;3=-9

\(\dfrac{2y}{24}\)=-1=>2y=-1.24=-24=>y=-24:2=-12

\(\dfrac{z}{16}\)=-1=>z=-1.16=-16

vậy...

27 tháng 10 2016

Ta có : \(\frac{x}{5}\)= \(\frac{y}{7}\)= \(\frac{z}{8}\)= \(\frac{x+y+z}{5+7+8}\)= \(\frac{18}{20}\)= \(\frac{9}{10}\)

Vậy : x = 5 .\(\frac{9}{10}\)= 4,5

y = 7 . \(\frac{9}{10}\)= 6,3

Chúc bạn học tốt !

z = 8. \(\frac{9}{10}\)= 7,2

17 tháng 9 2016

x : y : z = 3 : 4 : 5 

=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Thế vào đẳng thức , ta có : 

\(5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)

\(5.25k^2-3.9k^2-2.16k^2=594\)

\(125k^2-27k^2-32k^2=594\)

\(k^2.\left(125-27-32\right)=594\)

\(66k^2=594\)

\(k^2=9\)

\(\Rightarrow k=\hept{\begin{cases}3\\-3\end{cases}}\)

Với \(k=3\Rightarrow\hept{\begin{cases}x=3k=9\\y=4k=12\\z=5k=15\end{cases}}\)

\(k=-3\Rightarrow\hept{\begin{cases}x=3k=-9\\y=4k=-12\\z=5k=-15\end{cases}}\)

5 tháng 8 2017

Ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2=594\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)

\(\hept{\begin{cases}\frac{x^2}{3^2}=9\Rightarrow x=\sqrt{9.3^2}=9;x=-9\\\frac{y^2}{4^2}=9\Rightarrow y=\sqrt{9.4^2}=12;y=-12\\\frac{z^2}{5^2}=9\Rightarrow z=\sqrt{9.5^2}=15;z=-15\end{cases}}\)

Vậy \(x=9;y=12;z=15\)hoặc \(x=-9;y=-12;z=-15\)