K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 5 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\geq \frac{(x+y+z)^2}{1+y+1+z+1+x}=\frac{(x+y+z)^2}{(x+y+z)+3}\)

Áp dụng BĐT Cauchy:

\(x+y+z\geq 3\sqrt[3]{xyz}=3\)

Do đó:

\(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\geq \frac{(x+y+z)^2}{(x+y+z)+3}\geq \frac{(x+y+z)^2}{(x+y+z)+(x+y+z)}=\frac{x+y+z}{2}\geq \frac{3}{2}\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$

P/s: Bạn chú ý lần sau gõ tiêu đề bằng công thức toán !!!

2 tháng 12 2019

Ta có:\(\frac{4+4\sqrt{1+x^2}}{4x}\le\frac{4+5+x^2}{4x}=\)\(\frac{x^2+9}{4x}\)Tương tự ta đc P\(\le\frac{x+y+z}{4}+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{xy+yz+zx}{xyz}\right)\)\(\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\cdot\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)}\)\(=x+y+z\)

Dấu '='xảy ra <=>\(\hept{\begin{cases}x+y+z=xyz\\x=y=z\end{cases}\Rightarrow x=y=z=}\)\(\frac{1}{\sqrt{3}}\)

29 tháng 10 2017

Ta có :  1/x²+1 + 1/y²+1 + 1/z²+1 >=3/2 <=> \(\frac{1}{x^2+1}\ge\frac{1}{2}\)

                                                                      \(\frac{1}{y^2+1}\ge\frac{1}{2}\)

                                                                       \(\frac{1}{z^2+1}\ge\frac{1}{2}\)
Mà \(\frac{1}{x^2+1}\ge\frac{1}{2}\Leftrightarrow1.2\ge x^2+1\Leftrightarrow x^2\le1\)

Mà x,y,z > 0 và xyz=1 => 0 < x,y,z < 1  => x2 < 1 
tương tự vs y và z nhé 

14 tháng 8 2020

áp dụng bunhiacopski ta có: 

P^2 =< (1+1+1)(1/1+x^2 + 1/1+y^2+1/1+z^2)= 3(....)

đặt (...) =A

ta có: 1/1+x^2=< 1/2x

tt với 2 cái kia

=> A=< 1/2(1/x+1/y+1/z) =<1/2 ( xy+yz+xz / xyz)=1/2 ..........

đoạn sau chj chịu

^^ sorry

14 tháng 8 2020

Bài này là câu lớp 8 rất quen thuộc rùiiiiiii !!!!!!!!

gt <=>    \(\frac{x+y+z}{xyz}=1\)

<=>    \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

Đặt:   \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

=>    \(ab+bc+ca=1\)

VÀ:    \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)

THAY VÀO P TA ĐƯỢC:    

\(P=\frac{1}{\sqrt{1+\frac{1}{a^2}}}+\frac{1}{\sqrt{1+\frac{1}{b^2}}}+\frac{1}{\sqrt{1+\frac{1}{c^2}}}\)

=>     \(P=\frac{1}{\sqrt{\frac{a^2+1}{a^2}}}+\frac{1}{\sqrt{\frac{b^2+1}{b^2}}}+\frac{1}{\sqrt{\frac{c^2+1}{c^2}}}\)

=>     \(P=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\)

Thay     \(1=ab+bc+ca\)    vào P ta sẽ được:

=>      \(P=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

=>     \(P=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

=>      \(2P=2.\sqrt{\frac{a}{a+b}}.\sqrt{\frac{a}{a+c}}+2.\sqrt{\frac{b}{b+a}}.\sqrt{\frac{b}{b+c}}+2.\sqrt{\frac{c}{c+a}}.\sqrt{\frac{c}{c+b}}\)

TA ÁP DỤNG BĐT CAUCHY 2 SỐ SẼ ĐƯỢC:

=>      \(2P\le\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\)

=>     \(2P\le\left(\frac{a}{a+b}+\frac{b}{b+a}\right)+\left(\frac{b}{b+c}+\frac{c}{c+b}\right)+\left(\frac{c}{c+a}+\frac{a}{a+c}\right)\)

=>     \(2P\le\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\)

=>     \(2P\le1+1+1=3\)

=>     \(P\le\frac{3}{2}\)

DẤU "=" XẢY RA <=>    \(a=b=c\)    . MÀ     \(ab+bc+ca=1\)

=>     \(a=b=c=\sqrt{\frac{1}{3}}\)

=>     \(x=y=z=\sqrt{3}\)

VẬY P MAX \(=\frac{3}{2}\)      <=>      \(x=y=z=\sqrt{3}\)

22 tháng 11 2019

Câu hỏi của FF_ - Toán lớp 8 - Học toán với OnlineMath