Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2\ge3\left(\frac{xy}{z}.\frac{yz}{x}+\frac{yz}{x}.\frac{zx}{y}+\frac{zx}{y}.\frac{xy}{z}\right)=3\left(x^2+y^2+z^2\right)=3\)
\(\Rightarrow\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge\sqrt{3}\)
Ta chứng minh \(\frac{x^4+y^4}{x^2+y^2}\ge\frac{\frac{\left(x^2+y^2\right)^2}{2}}{x^2+y^2}=\frac{x^2+y^2}{2}\)
Tương tự và cộng lại
\(\Rightarrow VT\ge x^2+y^2+z^2\ge xy+xz+yz=3\)
Áp dụng BĐT AM - GM ta có :
\(P=\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\)
\(\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}\)
\(=\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{xy}}\)
\(\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}.\frac{xy+yz+xz}{xyz}\)
\(\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}\le\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)
Chúc bạn học tốt !!!
\(Q=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\le3-\frac{16}{x+y+z+6}=\frac{1}{3}\)
dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{1}{2};-1\right)\)
Mình cũng chịu bạn ạ vì mình mới học lớp 5 thôi
k mình nha
Chúc bạn học giỏi
Mình cảm ơn bạn nhiều
At the speed of light hữu ích thật.
Giải:
Đặt \(S=x+y+z\). Ta có: \(S^{2^{B.C.S}}=3.x^2+y^2+z^2\)
\(\Rightarrow4\ge3.x^2+y^2+z^2-3.x+y+z\ge S^2-3S\Rightarrow S+1.S-4\le4\Rightarrow-1\le S\le4\)
\(\text{BĐT}\Leftrightarrow x^4+y^4+z^4\ge xyz\left(x+y+z\right)\) (để ý giả thiết để đồng bậc 2 vế)
Giả sử \(z=min\left\{x,y,z\right\}\)
Ơ quên điều kiện x, y, z là các số thực -_-
\(B\text{Đ}T\Leftrightarrow x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)
\(VT-VP=\frac{1}{2}\left[\Sigma_{cyc}\left(x^2-y^2\right)^2+\Sigma_{cyc}\left(xy-yz\right)^2\right]\ge0\)