Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
x/2=y/3=x+y/2+3=20/5=4
=>x/2=4=>x=4*2=8
y/3=4=>y=3*4=12
tick nhé
a) \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\) và \(xyz=-108\)
Đặt: \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=k\)
\(\Rightarrow x=2k\)
\(y=\frac{3}{2}k\)
\(z=\frac{4}{3}k\)
\(\Rightarrow xyz=2k.\frac{3}{2}k.\frac{4}{3}k=4k^3=-108\Rightarrow k^3=-27\Rightarrow k=\sqrt[3]{-27}=-3\)
Vậy:
\(x=2.\left(-3\right)=-6\)
\(y=\frac{3}{2}.\left(-3\right)=-\frac{9}{2}\)
\(z=\frac{4}{3}.\left(-3\right)=-4\)
\(\frac{x}{y}=\frac{7}{20}\Leftrightarrow\frac{x}{7}=\frac{y}{20}\)
\(\frac{y}{z}=\frac{5}{8}\Leftrightarrow\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{y}{20}=\frac{z}{32}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{20}=\frac{z}{32}\) và \(3x+5y+7z=123\)
ADTCCDTSBN, ta có:
\(\frac{x}{7}=\frac{y}{20}=\frac{z}{32}=\frac{3x+5y+7z}{21+100+224}=\frac{123}{345}=\frac{41}{115}\)
\(\Rightarrow x=\frac{41}{115}.7=\frac{287}{115}\)
\(y=\frac{41}{115}.20=\frac{164}{23}\)
\(z=\frac{41}{115}.32=\frac{1312}{115}\)
Câu 1: \(B.\frac{5}{8}\)
Câu 2: \(C.x=20;y=12\)
Câu 3: \(B.\frac{1}{4}\)
a) Áp dụng tính chất cũa dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
- \(\frac{x}{3}=2\Rightarrow x=3.2=6\)
- \(\frac{y}{7}=2\Rightarrow y=7.2=14\)
Vậy : \(x=6;y=14\)
b) Áp dụng tính chất cũa dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
- \(\frac{x}{5}=2\Rightarrow x=2.5=10\)
- \(\frac{y}{2}=2\Rightarrow y=2.2=4\)
Vậy: \(x=10;y=4\)
a)Áp dụng tc dãy tỉ
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
\(\Rightarrow\begin{cases}\frac{x}{3}=2\\\frac{y}{7}=2\end{cases}\)\(\Rightarrow\begin{cases}x=6\\y=14\end{cases}\)
b)Áp dụng tc dãy tỉ
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
\(\Rightarrow\begin{cases}\frac{x}{5}=2\\\frac{y}{2}=2\end{cases}\)\(\Rightarrow\begin{cases}x=10\\y=4\end{cases}\)
\(\text{a)}\)\(2^{x+1}.3^y=2^{2x}.3^x\Leftrightarrow\frac{2^{2x}}{2^{x+1}}=\frac{3^y}{3^x}\)
\(\Leftrightarrow2^{x-1}=3^{y-x}\)
\(\Leftrightarrow x-1=y-x=0\)
\(\Leftrightarrow x=y=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{20}{5}=4\)
Suy ra: \(\frac{x}{2}=4\Rightarrow x=4\cdot2=8\)
\(\frac{y}{3}=4\Rightarrow y=3\cdot4=12\)