Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.5}=\frac{y}{3.5}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
Từ : \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5.3}=\frac{z}{7.3}\Rightarrow\frac{y}{15}=\frac{z}{21}\left(2\right)\)
Từ (1) và (2) Suy ra :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
=> x=2.10=20
=> y=15.2=30
=> z=21.2=42
Vậy x=20
y=30
z=42
thế thôi :)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)và x+y+z=92
Áp dụng t/c của dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=2\Rightarrow x=20\\\frac{y}{15}\Rightarrow y=30\\\frac{z}{21}=2\Rightarrow z=42\end{cases}}\)
Vậy x = 20 ; y = 30 ; z = 42
a) \(\frac{x}{2}=\frac{y}{3}\)và \(\frac{y}{5}=\frac{z}{7}\)và \(x+y+z=92\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số = nhau
ta có
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
Suy ra \(\frac{x}{10}=2\Rightarrow x=2.10=20\)
\(\frac{y}{15}=2\Rightarrow y=2.15=30\)
\(\frac{z}{21}=2\Rightarrow z=2.21=42\)
Vậy \(x=20;y=30;z=42\)
1.
\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}=>\frac{y}{15}=\frac{z}{21}\)
=>\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
=> x=2x10=20
y=2x15=30
z=2x21=42
a) ta có: \(a:b:c=5:4:3\Rightarrow\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\)
ADTCDTSBN
...
b) ta có: \(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}=\frac{a}{4}=\frac{b}{5}=\frac{3c}{6}\)
ADTCTDSBN
...
c) ta có: \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\)
ADTCDTSBN
...
d) bn xem lại đề giúp mk nha
Tớ chỉ làm câu b thôi nhé
Nếu x/2=y/3,y/5=z/7 Suy ra y là 15 phần, x là 10 phần, z là 21 phần
92:(15+10+21)=2
x=2.10=20
y=2.15=30
z=2.21=42
Có: \(\frac{x}{2}=\frac{y}{3};\frac{z}{5}=\frac{y}{7}\)
\(\Leftrightarrow\)\(\frac{x}{14}=\frac{y}{21};\frac{z}{15}=\frac{y}{21}\)
=> \(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}=\frac{x+y+z}{14+21+15}=\frac{92}{50}=\frac{46}{25}\)
\(\Rightarrow\begin{cases}x=\frac{644}{25}\\y=\frac{966}{25}\\z=\frac{138}{5}\end{cases}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)
Do đó: x=20; y=30; z=42
c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và\(2x^2+2y^2-3z^2=-100\)
đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)
\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)
\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)
mà\(2x^2+2y^2-3z^2=-100\)
thay\(6k^2+8k^2-15k^2=-100\)
\(k^2\left(6+8-15\right)=-100\)
\(k^2.\left(-1\right)=-100\)
\(k^2=100\)
\(\Rightarrow k=\pm10\)
bạn thế vào nha
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.