K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2016

x/y=3/5-1

x/y= - 2/5

5x + 1 = -2 .5+1= -9

TÔI MỚI HỌC LỚP 6 THÔI NHA 

8 tháng 6 2020

nhầm xíu '-'

20 tháng 6 2016

a) \(X^2+5X< 0\)

<=> \(X\left(X+5\right)< 0\)

<=> TH1: \(x< 0;x+5>0\Leftrightarrow-5< x< 0\)

 TH2: \(x>0;x+5< 0\Leftrightarrow0< x< -5\) (vô lí)

Vậy \(-5< x< 0\)

15 tháng 1 2016

|5x-3|-2x=14

=>|5x-3|=14+2x

=>5x-3=14+2x hoặc 5x-3=-14-2x

=>x=17/3 hoặc x=-11/7

=>x ko tồn tại

15 tháng 1 2016

5/x+y/4=1/8

=>5/x=1/8-y/4

=>5/x=1/8-2y/8=(1-2y)/8

=>x.(1-2y)=5.8=40

rồi lập bảng (chú ý là 1-2y là ước lẻ của 40)

2 tháng 9 2017

mình chỉ làm 1 phần thui nhé,lười lắm

x/2=y/3=>3x=2y

=>x=15:(3-2).2=30

y=30+15 =45

2 tháng 9 2017

bn phúc ơi giúp mk hết đi mk sẽ tk thật nhìu cho bn

NV
27 tháng 9 2019

Đầu tiên là tính chất cơ bản của trị tuyệt đối: \(\left|A\right|\ge0\) với A là một biểu thức bất kì

Cho nên, để pt \(\left|A\right|=a\) có nghiệm thì điều kiện ban đầu là \(a\ge0\)

Ví dụ như sau:

\(\left|x+1\right|=1\)

Ta thấy \(1>0\) nên pt này có nghiệm

Còn pt: \(\left|x+1\right|=-1\)

Thì \(-1< 0\) nên pt này vô nghiệm

Do đó, ở 1 pt nếu 1 vế là trị tuyệt đối, 1 vế là biểu thức theo x thì đầu tiên ta phải tìm điều kiện cho biểu thức vế phải không âm

Ví dụ:

\(\left|3x+2\right|=2x-1\)

Thì đầu tiên phải tìm điều kiện để vế phải ko âm, nghĩa là:

\(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)

Xong bước tìm điều kiện, giờ đến giải pt

//

Phương trình trị tuyệt đối có dạng: \(\left|A\right|=a\) (với \(a\ge0\)) thì ta suy ra:

\(\left[{}\begin{matrix}A=a\\A=-a\end{matrix}\right.\)

Ví dụ như sau:

\(\left|2x+3\right|=1\Rightarrow\left[{}\begin{matrix}2x+3=1\\2x+3=-1\end{matrix}\right.\) sau đó giải pt bình thường

Nếu vế phải là biểu thức của x thì cũng làm y hệt thôi, ví dụ như sau:

\(\left|3x+2\right|=2x-1\)

Sau khi đã xong bước tìm điều kiện bên trên, pt trở thành:

\(\Rightarrow\left[{}\begin{matrix}3x+2=2x-1\\3x+2=-\left(2x-1\right)\end{matrix}\right.\)

Và giải bình thường.

Sau khi giải xong, nhớ đối chiếu nghiệm tìm được với điều kiện ban đầu, nếu thỏa mãn thì nhận, còn ko thì phải loại.

Ví dụ 1 bài toán đầy đủ:

\(\left|5x-3\right|-2x+5=0\)

\(\Leftrightarrow\left|5x-3\right|=2x-5\) (đầu tiên, biến đổi về dạng \(\left|A\right|=a\))

Do \(\left|5x-3\right|\ge0\Rightarrow2x-5\ge0\Rightarrow x\ge\frac{5}{2}\) (tìm điều kiện cho vế phải)

Khi đó:

\(\left|5x-3\right|=2x-5\)

\(\Rightarrow\left[{}\begin{matrix}5x-3=2x-5\\5x-3=-\left(2x-5\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x=-2\\7x=8\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{2}{3}< \frac{5}{2}\\x=\frac{8}{7}< \frac{5}{2}\end{matrix}\right.\)

2 nghiệm vừa tìm được đều nhỏ hơn \(\frac{5}{2}\) (không thỏa mãn) nên pt vô nghiệm