Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+2y=xy-1\\2x+3y=2xy-4\end{cases}\Leftrightarrow\hept{\begin{cases}2x+4y=2xy-2\left(1\right)\\2x+3y=2xy-4\left(2\right)\end{cases}}}\)
Trừ theo vế (1) cho (2) ta có: y = 2
Thay y = 2 vào (1) <=> 2x + 8 = 4x - 2 <=> 2x = 10 <=> x = 5
Vậy PT có nghiệm là \(\hept{\begin{cases}x=5\\y=2\end{cases}}\)
P/s: Em ko chắc vì chưa học cái này nhiều nên bài em chưa đúng đâu ạ =)))
\(\int^{3y-2x=1}_{7y-5x=1}\Leftrightarrow\int^{3y-2x=1}_{7y-5x=3y-2x}\Leftrightarrow\int^{3y-2x=1}_{4y=3x}\Leftrightarrow\int^{\frac{9}{4}x-2x=1}_{y=\frac{3}{4}x}\Leftrightarrow\int^{x=4}_{y=3}\)
a)
\(\left\{{}\begin{matrix}x+y+xy=7\\x^2+y^2+xy=13\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+xy=7\\\left(x+y\right)^2-xy=13\end{matrix}\right.\)
Đặt x+y = S, xy = P,ta có hệ
\(\left\{{}\begin{matrix}S+P=17\\S^2-P=13\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}P=S-17\\S^2-S+4=0\end{matrix}\right.\)
\(S^2-S+4>0\)
=> Hệ phương trình vô nghiệm
hệ \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x+2y\right)+\left(x-y\right)=0\\x^2-y^2+x+y=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x+2y+1\right)=0\left(1\right)\\x^2-y^2+x+y=6\left(2\right)\end{cases}}\)
Th1: x=y
pt 2<=> 2x=6
<=> x=y=3
Th2: x+2y+1=0
<=> x=-1-2y
=> pt (2) <=> \(\left(-1-2y\right)^2-y^2-1-2y+y=6\)
\(\Leftrightarrow4y^2+4y+1-y^2-1-2y+y=6\)
\(\Leftrightarrow3y^2+3y-6=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)
KL:............................
\(D=\frac{2}{\sqrt{xy}}:\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}\right)^2-\frac{x+y}{x-2\sqrt{xy}+y}\left(ĐKXĐ:x\ge0,y\ge0,x\ne y\right)\)
\(\Leftrightarrow D=\frac{2}{\sqrt{xy}}:\left(\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}\right)^2-\frac{x+y}{\sqrt{x}}\)
\(\Leftrightarrow D=\frac{2}{\sqrt{xy}}.\frac{xy}{\left(\sqrt{x}-\sqrt{y}\right)^2}-\frac{x+y}{\left(\sqrt{x}-\sqrt{y}\right)^2}\)
\(\Leftrightarrow D=\frac{2\sqrt{xy}-x-y}{\left(\sqrt{x}-\sqrt{y}\right)^2}=\frac{-\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)^2}=-1\)
=> ko phụ thuộc x
a) \(\sqrt{x}+\sqrt{\frac{x}{9}}-\frac{1}{3}\sqrt{4x}=5\)
ĐK : x ≥ 0
<=>\(\sqrt{x}+\sqrt{x\times\frac{1}{9}}-\frac{1}{3}\sqrt{2^2x}=5\)
<=> \(\sqrt{x}+\sqrt{x\times\left(\frac{1}{3}\right)^2}-\left(\frac{1}{3}\times\left|2\right|\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\left|\frac{1}{3}\right|\sqrt{x}-\left(\frac{1}{3}\times2\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\frac{1}{3}\sqrt{x}-\frac{2}{3}\sqrt{x}=5\)
<=> \(\sqrt{x}\left(1+\frac{1}{3}-\frac{2}{3}\right)=5\)
<=> \(\sqrt{x}\times\frac{2}{3}=5\)
<=> \(\sqrt{x}=\frac{15}{2}\)
<=> \(x=\frac{225}{4}\)( tm )
\(\left\{{}\begin{matrix}xy=1100\\y-\dfrac{1100}{x+5}=2\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1100}{x}\left(x\ne0\right)\left(1\right)\\\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\left(2\right)\end{matrix}\right.\)
* giải pt(2)\(=>\dfrac{1100x+5500-1100x}{x^2+5x}=2\)
\(=>5500=2x^2+10x=>2x^2+10x-5500=0\)
\(=>\Delta=10^2-4\left(-5500\right)2=44100>0\)
\(=>\left[{}\begin{matrix}x1=\dfrac{-10+\sqrt{44100}}{2.2}=50\left(TM\right)\left(3\right)\\x2=\dfrac{-10-\sqrt{44100}}{2.2}=-55\left(TM\right)\left(4\right)\end{matrix}\right.\)
thế(3)(4) vào(1)\(=>\left[{}\begin{matrix}y=\dfrac{1100}{50}=22\\y=\dfrac{1100}{-55}=-20\end{matrix}\right.\)
vậy...