\(x,y>0\)thỏa mãn \(x\ge2y\).Tìm \(mi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

Ta có:

\(A=\frac{2x^2+y^2-2xy}{xy}=\frac{\left(x^2-4xy+4y^2\right)+x^2+2xy-3y^2}{xy}=\frac{\left(x-2y\right)^2+x^2+2xy-3y^2}{xy}\)

\(=\frac{\left(x-2y\right)^2}{xy}+\frac{x}{y}+2+\frac{-3y}{x}\ge0+2+2+\frac{-3}{2}=\frac{5}{2}\)

Vậy minA = \(\frac{5}{2}\)khi x = 2y.

25 tháng 11 2016

Từ điều kiện bài toán ta có

\(\hept{\begin{cases}\frac{x}{y}\ge1\\x-y\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{y}\ge1\\x^2-2xy+y^2\ge0\end{cases}}\)

Thế vào ta được

\(P=\frac{2x^2+y^2-2xy}{xy}\ge\frac{x^2}{xy}=\frac{x}{y}\ge1\)

Dấu = xảy ra khi x = y

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

2 tháng 12 2016

\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+2+\frac{5}{\left(x+y\right)^2}=4+2+5=11\)

2 tháng 12 2016

A = \(\frac{7}{2}\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)-\frac{5}{2\left(x^2+y^2\right)}\)

Áp dụng bđt cauchy là ra bài

2 tháng 5 2022

undefined

17 tháng 5 2016

\(GT\Leftrightarrow x^2+y^2+1+2xy-2x-2y=xy\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2=1-xy\rightarrow xy\le1\)

\(\rightarrow\left(x+y-1\right)^2\le1\Leftrightarrow\left(x+y-2\right)\left(x+y\right)\le0\rightarrow x+y\le2\)

\(\text{Ta có:}P=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}=\frac{1}{2xy}+\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{\left(x+y\right)\sqrt{xy}}{\left(x+y\right)^2}\)

\(\ge\frac{1}{2xy}+\frac{4}{\left(x+y\right)^2}+\frac{2xy}{\left(x+y\right)^2}=\left(\frac{1}{2xy}+\frac{2xy}{\left(x+y\right)^2}\right)+\frac{4}{\left(x+y\right)^2}\)


\(\ge\frac{2}{x+y}+\frac{4}{\left(x+y\right)^2}\ge\frac{2}{2}+\frac{4}{2^2}=2\)

Vậy MinP=2 <=>x=y=1

17 tháng 5 2016

ra 1 nhé