K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

\(pt\left(2\right)\Leftrightarrow\left(x^4\right)^2+\left(y^4\right)^2=35\)

\(\Leftrightarrow\left(x^4+y^4\right)^2-2x^4y^4=35\)

\(\Leftrightarrow\left(x^4+y^4\right)^2-2x^4y^4=35\)

\(\Leftrightarrow\left(\left(x^2\right)^2+\left(y^2\right)^2\right)^2-2x^4y^4=35\)

\(\Leftrightarrow\left(\left(x^2+y^2\right)^2-2x^2y^2\right)^2-2\left(xy\right)^4=35\)

\(\Leftrightarrow\left[\left(\left(x+y\right)^2-2xy\right)^2-2\left(xy\right)^2\right]^2-2\left(xy\right)^4=35\)

Và \(pt\left(1\right)\Leftrightarrow xy\left(x+y\right)=30\)

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\Rightarrow S^2\ge4P\) thì có:

\(\hept{\begin{cases}\left[\left(S^2-2P\right)^2-2P^2\right]^2-2P^4=35\\SP=30\end{cases}}\)

Thay lẫn lộn vào nhau giải ra thì có....

23 tháng 6 2017

Thắng Nguyễn cách này không khả thi đâu. You cứ giải đến cuối sẽ thấy.

21 tháng 1 2018

mình chịu lun

15 tháng 12 2015

Ai tick mik vài cái cho tròn 170 với

15 tháng 12 2015

haizz

kho wa

 

30 tháng 5 2016

\(\hept{\begin{cases}\left(x+y\right)\left(x+z\right)=8\left(1\right)\\\left(x+y\right)\left(y+z\right)=16\left(2\right)\\\left(x+z\right)\left(z+y\right)=32\left(3\right)\end{cases}}\)

Nhân các phương trình (1) , (2) , (3) theo vế ta được : \(\left[\left(x+y\right)\left(y+z\right)\left(x+z\right)\right]^2=4096\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=64\)hoặc \(\left(x+y\right)\left(y+z\right)\left(z+x\right)=-64\)

1. Với (x+y)(y+z)(z+x) = 64 , từ (1) , (2) , (3)  suy ra \(\hept{\begin{cases}x+y=2\\y+z=8\\z+x=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=3\\z=5\end{cases}}\)

2. Với (x+y)(y+z)(z+x) = -64 , từ (1) , (2) , (3) suy ra : \(\hept{\begin{cases}x+y=-2\\y+z=-8\\z+x=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\\z=-5\end{cases}}}\)

Vậy nghiệm của hệ là : \(\left(x;y;z\right)=\left(-1;3;5\right);\left(1;-3;-5\right)\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 1:

ĐK:...........

PT\((1)\Rightarrow x+y+2\sqrt{(x+y)(x-y)}+x-y=16\) (bình phương 2 vế)

\(\Leftrightarrow x+\sqrt{x^2-y^2}=8\)

\(\Leftrightarrow \sqrt{x^2-y^2}=8-x\Rightarrow \left\{\begin{matrix} 8-x\geq 0\\ x^2-y^2=(8-x)^2=x^2-16x+64\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\leq 8\\ y^2=16x-64\end{matrix}\right.\)

Thay vào PT(2) ta có:

\(x^2+16x-64=128\)

\(\Leftrightarrow x^2+16x-192=0\Rightarrow \left[\begin{matrix} x=8\\ x=-24\end{matrix}\right.\)

Nếu \(x=8\Rightarrow y^2=16x-64=64\Rightarrow y=\pm 8\) (thỏa mãn)

Nếu $x=-24\Rightarrow y^2=16x-64< 0$ (vô lý-loại)

Vậy $(x,y)=(8,\pm 8)$

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 2:

Ta thấy:

\(x^2-4x+11=(x^2-4x+4)+7=(x-2)^2+7\geq 0, \forall x\)

\(x^4-8x^2+21=(x^4-8x^2+16)+5=(x^2-4)^2+5\geq 5, \forall x\)

Do đó:

\((x^2-4x+11)(x^4-8x^2+21)\geq 7.5=35\)

Dấu "=" xảy ra khi \((x-2)^2=(x^2-4)^2=0\Leftrightarrow x=2\)

Vậy.......