Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
Ta có:
xy + 12 = x + y
<=>x - xy + y - 1 = 12-1
<=> x ( 1-y ) - ( 1 - y ) = 11
<=> ( x - 1 ) ( 1 - y ) = 11
Vì x;y nguyên nên x - 1 và 1 - y nguyên => 11 chia hết x - 1 => x - 1 thuộc Ư(11) = { 1; 11; -1; -11 }
ta có bảng:
x-1 | 1 | 11 | -1 | -11 |
x | 2 | 12 | 0 | -10 |
1-y | 11 | 1 | -11 | -1 |
y | -10 | 0 | 12 | 2 |
Vậy ( x ; y ) \(\in\){ ( 2; -10) ; (12; 0 ) ; (0; 12) ; (-10; 2)}
1) \(\left(x-4\right)\left(y+1\right)=8\)
Do \(y\)là số tự nhiên nên \(y+1\ge1\)nên
ta có bảng giá trị:
x-4 | 1 | 2 | 4 | 8 |
y+1 | 8 | 4 | 2 | 1 |
x | 5 | 6 | 8 | 12 |
y | 7 | 3 | 1 | 0 |
2) \(\left(2x+3\right)\left(y-2\right)=15\)
Có \(x\)là số tự nhiên nên \(2x+3\ge3\). Ta xét bảng giá trị:
2x+3 | 3 | 5 | 15 |
y-2 | 5 | 3 | 1 |
x | 0 | 1 | 6 |
y | 7 | 9 | 3 |
3) \(xy+2x+y=12\)
\(\Leftrightarrow x\left(y+2\right)+y+2=14\)
\(\Leftrightarrow\left(x+1\right)\left(y+2\right)=14\)
Tiếp tục bạn làm tương tự 1) và 2).
4) \(xy-x-3y=4\)
\(\Leftrightarrow y\left(x-3\right)-x+3=7\)
\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=7\)
Tiếp tục bạn làm tương tự 1) và 2).