
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Ta có: \(x⋮4;x⋮7;x⋮8\Rightarrow x\in BCNN\left(4;7;8\right)=56\)
b) Tương tự câu a
c)Ta có: \(x\in BC\left(9;8\right)\) và x nhỏ nhất
\(\Rightarrow x\in BCNN\left(9;8\right)=72\)
d) Ta có: \(B\left(6\right)=\left\{0;6;12;18;24;30;36;42;48;54;....\right\}\)
\(B\left(4\right)=\left\{0;4;8;12;16;20;24;28;32;36;40;44;48;52;...\right\}\)
Mà \(16\le x< 50\Rightarrow x=\left\{24;36;48\right\}\)
e;f;g;h Tương tự

a) 45 ⋮ x
Vì 45 ⋮ x nên x E Ư( 45 )
= { 1;3;5;9;15;45 }
mà x E Ư(45)
=> x E { 1;3;5;9;15;45 }
b) 24 ⋮ x ; 36 ⋮ x ; 160 ⋮ x và x lớn nhất
Vì 24 ⋮ x ; 36 ⋮ x ; 160 ⋮ x nên x E ƯC ( 24;36;160)
mà x lớn nhất
=> x E ƯCLN ( 24;36;160 )
Ta có
24 = 23 . 3
36 = 22.32
160 = 25 . 5
=> ƯCLN ( 24;36;160 ) = 22 = 4

\(8-12x+6x^2-x^3\)
\(=\left(2-x\right)^3\)
\(125x^3-75x^2+15x-1\)
\(=\left(5x-1\right)^3\)
\(x^2-xz-9y^2+3yz\)
\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-z\right)\)
\(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
\(x^3+2x^2-6x-27\)
\(=x^3+5x^2+9x-3x^2-15x-27\)
\(=x\left(x^2+5x+9\right)-3\left(x^2+5x+9\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
\(12x^3+4x^2-27x-9\)
\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(4x^2-9\right)\)
\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)
\(4x^4+4x^3-x^2-x\)
\(=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=x\left(x+1\right)\left(4x^2-1\right)\)
\(=x\left(x+1\right)\left(2x-1\right)\left(2x+1\right)\)

a/ Số cần tìm là bộ số chung nhỏ nhất của 4;7;8
Ta có:
\(4=2^2\)
\(7=7^1\)
\(8=2^3\)
Vậy BSCNN là: \(8.7=56\)
b/ Số cần tìm là bộ số chung nhỏ nhất của 2;3;5;7
Ta có:
\(2=2^1\)
\(3=3^1\)
\(5=5^1\)
\(7=7^1\)
Vậy BSCNN là: \(2.3.5.7=210\)
c/ \(9=3^2\)
\(8=2^3\)
\(\Rightarrow x=BCNN=9.8=72\)
d/ \(6=2.3\)
\(4=2^2\)
\(\Rightarrow BCNN=4.3=12\)
\(\Rightarrow x=12a\left(a\in N\right)\)
\(\Rightarrow16\le12a\le50\)
\(\Rightarrow2\le a\le4\)
\(\Rightarrow a=2;3;4\)
\(\Rightarrow x=24;36;48\)

a/ \(\left(x-35\right)-120=0\)
\(\Leftrightarrow x-35=0+120\)
\(\Leftrightarrow x-35=120\)
\(\Leftrightarrow x=120+35\)
\(\Leftrightarrow x=155\)
Vậy ...
b/ \(124+\left(188-x\right)=217\)
\(\Leftrightarrow188-x=217-124\)
\(\Leftrightarrow188-x=93\)
\(\Leftrightarrow x=95\)
Vậy ...
b/ \(156-\left(x+61\right)=82\)
\(\Leftrightarrow x+61=74\)
\(\Leftrightarrow x=13\)
Vậy ..

a)\(\hept{\begin{cases}x⋮18\\x⋮24\end{cases}\Rightarrow x\in BC\left(18,24\right)}\)
Ta có
\(18=3^2.2\)
\(24=2^3.3\)
\(\Rightarrow BCNN\left(18,24\right)=3^2.2^3=72\)
\(\Rightarrow BC\left(18,24\right)=\left\{0;72;144;216;...\right\}\)
Mà \(100< x< 150\)
\(\Rightarrow x=144\)
b)\(\hept{\begin{cases}126⋮x\\36⋮x\end{cases}\Rightarrow x\inƯC\left(126,36\right)}\)
Ta có
\(126=2.3^2.7\)
\(36=2^2.3^2\)
\(\RightarrowƯCLN\left(126,36\right)=2.3^2=18\)
\(\RightarrowƯC\left(126,36\right)=\left\{1;2;3;6;9;18\right\}\)
Mà \(x>10\)
\(\Rightarrow x=18\)
c)\(\hept{\begin{cases}48⋮x\\32⋮x\end{cases}\Rightarrow x\inƯC\left(48,32\right)}\)
Mà x lớn nhất \(\Rightarrow x=ƯCLN\left(48,32\right)\)
Ta có
\(48=2^4.3\)
\(32=2^5\)
\(\RightarrowƯCLN\left(48,32\right)=2^4=16\)
Vậy \(x=16\)
d)\(\hept{\begin{cases}x⋮18\\x⋮24\\x⋮54\end{cases}\Rightarrow x\in BC\left(18,24,54\right)}\)
Mà x nhỏ nhất khác 0 \(\Rightarrow x=BCNN\left(18,24,54\right)\)
Ta có
\(18=2.3^2\)
\(24=2^3.3\)
\(54=2.3^3\)
\(\Rightarrow BCNN\left(18,24,54\right)=2^3.3^3=216\)
Vậy \(x=216\)
x + x = x
2x = x
2x - x = 0
X = 0
Vậy x = 0
x + x = x 2x = x
2x - x = 0
X = 0
Vậy x = 0