
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


để \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\) thì \(x^2\left(x-3\right)\:v\text{à}\:x-9\:ph\text{ải}\:kh\text{ác}\:nhau\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2\left(x-3\right)>0\\x-9< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2\left(x-3\right)< 0\\x-9>0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^3>3x^2\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x^3< 3x^2\\x>9\end{matrix}\right.\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>3\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 3\\x>9\end{matrix}\right.\end{matrix}\right.\Rightarrow3< x< 9\)

a. \(\dfrac{1}{2}x+\dfrac{3}{5}x=\dfrac{-33}{25}\)
\(\Rightarrow\dfrac{11}{10}x=\dfrac{-33}{25}\)
\(\Rightarrow x=\dfrac{-33}{25}:\dfrac{11}{10}=\dfrac{-6}{5}\)
Vậy.........
b. \(\left(\dfrac{2}{3}x-\dfrac{4}{9}\right)\left(\dfrac{1}{2}+\dfrac{-3}{7}:x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x-\dfrac{4}{9}=0\\\dfrac{1}{2}+\dfrac{-3}{7}:x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=\dfrac{4}{9}\\\dfrac{-3}{7}:x=\dfrac{-1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{6}{7}\end{matrix}\right.\)
Vậy................

1, a/ \(\left|x\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy .............
b/ \(\left|x\right|=3,12\Leftrightarrow\left[{}\begin{matrix}x=3,12\\x=-3,12\end{matrix}\right.\)
Vậy ...........
c/ \(\left|x\right|=0\Leftrightarrow x=0\)
Vậy ..........
d/ \(\left|x\right|=2\dfrac{1}{7}\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\dfrac{1}{7}\\x=-2\dfrac{1}{7}\end{matrix}\right.\)
Vậy ..............
2, a/ \(\left|x\right|=2,1\Leftrightarrow\left[{}\begin{matrix}x=2,1\\x=-2,1\end{matrix}\right.\)
Vậy ...........
b/ \(\left|x\right|=\dfrac{17}{9}\) ; \(x< 0\)
\(\Leftrightarrow x=-\dfrac{17}{9}\)
Vậy ..........
c/ \(\left|x\right|=1\dfrac{2}{5}\Leftrightarrow\left[{}\begin{matrix}x=1\dfrac{2}{5}\\x=-1\dfrac{2}{5}\end{matrix}\right.\)
Vậy ...........
d/ \(\left|x\right|=0,35\) ; \(x>0\Leftrightarrow x=0,35\)
3, a/ \(\left|x-1,7\right|=2,3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1,7=2,3\\x-1,7=-2,3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-0,6\end{matrix}\right.\)
Vậy ...........
b/ \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{3}=0\)
\(\Leftrightarrow\left|x+\dfrac{3}{4}\right|=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5}{12}\\x=-\dfrac{13}{12}\end{matrix}\right.\)
Vậy ...........

1.a)\(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2.x=\dfrac{20}{15}+\dfrac{5}{4}=\dfrac{4}{3}+\dfrac{5}{4}=\dfrac{16+15}{12}=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{12}:2=\dfrac{31}{12}.\dfrac{1}{2}=\dfrac{31}{24}\)
b)\(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{8}\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}=-\dfrac{5}{6}\)
2.Theo đề bài, ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\) và \(a+b=-15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{a+b}{2+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=-3\Rightarrow a=-6\\\dfrac{b}{3}=-3\Rightarrow b=-9\end{matrix}\right.\)
3.Ta xét từng trường hợp:
-TH1:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow x\in\left\{0;1\right\}\)
-TH2:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{0;1\right\}\)
4.\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^9=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{18}=\left(\dfrac{3}{7}\right)^3=\dfrac{27}{343}\)

a) \(2x\left(x-\frac{1}{7}\right)=0\)
\(x\left(x-\frac{1}{7}\right)=0\)
\(\Rightarrow2x-2.\frac{1}{7}=0\)
\(2x-\frac{2}{7}=0\)
=> \(2x=\frac{2}{7}\)
=> x=\(\frac{1}{7}\)
b) (x-9)(\(x+\frac{3}{5}\))=0
\(\Rightarrow\orbr{\begin{cases}x-9=0\\x+\frac{3}{5}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-3}{5}\end{cases}}\)
Vậy x=0 hoặc x=-3/5
c) \(\left(\frac{-4}{7}-2x\right)\left(x-\frac{5}{4}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{-4}{7}-2x=0\\x-\frac{5}{4}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{7}\\x=\frac{5}{4}\end{cases}}\)
Vậy x=-2/7 hoặc x=5/4
a, => x.(x-1/7) = 0:2 = 0
=> x=0 hoặc x-1/7=0
=> x=0 hoặc x=1/7
Vậy x thuộc {0;1/7}
b, => x-9=0 hoặc x+3/5=0
=> x=9 hoặc x=-3/5
Vậy x thuộc {-3/5;9}
c, => -4/7-2x=0 hoặc x-5/4=0
=> x=-2/7 hoặc x=5/4
Vậy x thuộc {-2/7;5/4}
Tk mk nha

Ta có \(\left|x-2\right|\ge0\) \(\Rightarrow3\left|x-2\right|\ge0\)
\(\left|x+2\right|\ge0\)
\(\Rightarrow3\left|x-2\right|-\left|x+2\right|\ge0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
\(\Rightarrow x+2=0\Rightarrow x=-2\)
Vậy x=2 hoặc x=-2

a) \(4^{x+3}-248=2^{x+1}\)
\(\Leftrightarrow2^{2x+6}-248=2^{x+1}\)
\(\Leftrightarrow2^{2x+6}-2^{x+1}=248\)
\(\Leftrightarrow2^{x+1}\left(2^{x+5}-1\right)=248=2^3.31=2^2.62=2.124=1.248\)
Thay vào nha
\(x\left(x+3\right)-x^2+9=0\\ x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\\ \left(x+3\right)\cdot\left(x-x+3\right)=0\\ 3\cdot\left(x+3\right)=0\\ ⟹\:x+3=0⟹\:x=-3\)
Để giải phương trình \(x \left(\right. x + 3 \left.\right) - x^{2} + 9 = 0\), ta thực hiện các bước sau:
\(x \left(\right. x + 3 \left.\right) = x^{2} + 3 x\)
Do đó, phương trình trở thành:
\(x^{2} + 3 x - x^{2} + 9 = 0\)
\(\left(\right. x^{2} - x^{2} \left.\right) + 3 x + 9 = 0 \Rightarrow 3 x + 9 = 0\)
\(3 x = - 9 \Rightarrow x = - 3\)
Vậy nghiệm của phương trình là \(x = - 3\).