![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=8\)
\(\Leftrightarrow x\left(x+3\right)\left(x+1\right)\left(x+2\right)=8\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)=8\)
Đặt \(x^2+3x=u\)
Phương trình trở thành: \(u\left(u+2\right)=8\)
\(\Leftrightarrow u^2+2u-8=0\Leftrightarrow\left(u-2\right)\left(u+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}u-2=0\\u+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}u=2\\u=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+3x=2\\x^2+3x=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+3x-2=0\\x^2+3x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm\frac{\sqrt{17}}{2}-1\frac{1}{2}\\x\in\varnothing\end{cases}}\)
c) \(\left(x+2\right)\left(x+3\right)\left(x-7\right)\left(x-8\right)=144\)
\(\Leftrightarrow\left(x+2\right)\left(x-7\right)\left(x+3\right)\left(x-8\right)=144\)
\(\Leftrightarrow\left(x^2-5x-14\right)\left(x^2-5x-24\right)=144\)
Đặt \(x^2-5x-14=v\)
Phương trình trở thành: \(v\left(v-10\right)=144\)
\(\Leftrightarrow v^2-10v-144=0\Leftrightarrow\left(v-18\right)\left(v+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}v-18=0\\v+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}v=18\\v=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-5x-14=18\\x^2-5x-14=-8\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\frac{3\sqrt{17}}{2}+\frac{5}{2}\\x\in\left\{6;-1\right\}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) xài qui nạp để cm \(\sqrt{1^3+2^3+...+x^3}=1+2+3+...+x=\frac{x\left(x+1\right)}{2}\)
2) a) Vô nghiệm vì ĐKXĐ không tm
b) auto do
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có công thức: Với \(x\in N\) thì \(\sqrt{1^3+2^3+3^3+...+x^3}=1+2+3+...+x=\frac{x\left(x+1\right)}{2}\)
Do đó pt trên tương đương với \(\frac{x\left(x+1\right)}{2}=4950\)
Tìm được x = 99
Chẳng thèm nói nhiều :v Nhìn đề bải thì làm phát đặt biến ngay ^_^
Lời giải: \(Dat:\hept{\begin{cases}\sqrt[8]{1+x}=a>0\\\sqrt[8]{1-x}=b>0\end{cases}}\)
\(\hept{\begin{cases}a+b+ab=3\\a^8+b^8=2\end{cases}=>\hept{\begin{cases}3\ge ab+2\sqrt{ab}\\2\ge2a^4b^4=>1\ge ab\end{cases}}}=>\hept{\begin{cases}ab\ge1\\1\ge ab\end{cases}=>ab=1.}\)
\(\hept{\begin{cases}a+b=2\left(Vi:ab=1\right)\\a^8+b^8=2\end{cases}}\left(\cdot\right)=>a=b=1\)
Ta có a=b=1 Vì: \(a^8+b^8\ge\frac{\left(a^4+b^4\right)^2}{2}\ge\frac{1}{2}\left(\frac{\left(a^2+b^2\right)^2}{2}\right)^2\ge\frac{\left(a+b\right)^8}{8.2^4}=2=>Dáu=xayra< =>a=b=1\)
K mình nhé ^^
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Gọi biểu thức là A.
\(A=256.\frac{1}{8}+\frac{1}{49^2}.7^3+\frac{1}{36^2}.\frac{1}{8^2}.27\\ =32+\frac{1}{7}+\frac{1}{3072}=32\frac{3079}{21504}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2/ vì x2 + x +1>0 nên
PT <=> x2 +x =0
3/ PT <=> (x4 + x2 -18)2 - 162 = 0
Tới đây thì bài toán đã đơn giản hơn rất nhiều nên bạn tự giải tiếp nha
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(\frac{6x^2+8x+7}{x^3-1}+\frac{x}{x^2+x+1}+\frac{6}{1-x}\right)\left(x^2-1\right)\)
\(=\left[\frac{6x^2+8x+7}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\left(x-1\right)\left(x+1\right)\)
\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}.\left(x-1\right)\left(x+1\right)=x+1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn nên viết đề bằng công thức toán và ghi đầy đủ yêu cầu đề để mọi người hiểu đề của bạn hơn nhé.
x(x-1)(x-2)(x-3)-8
= x(x-3)(x-1)(x-2)-8
=(x^2-3x)(x^2-3x+2)-8
Đặt x^2-3x = a ta có:
a(a+2)-8 = a^2+2a-8
=a^2+4a-2a-8
=a(a+4)-2(a+4)
=(a+4)(a-2)
=(x^2-3x+4)(x^2-3x-2)
Vậy: x(x-1)(x-2)(x-3)-8 =(x^2-3x+4)(x^2-3x-2)
x(x-1)(x-2)(x-3)-8
= x(x-3)(x-1)(x-2)-8
=(x^2-3x)(x^2-3x+2)-8
Đặt x^2-3x = a ta có:
a(a+2)-8 = a^2+2a-8
=a^2+4a-2a-8
=a(a+4)-2(a+4)
=(a+4)(a-2)
=(x^2-3x+4)(x^2-3x-2)
Vậy: x(x-1)(x-2)(x-3)-8 =(x^2-3x+4)(x^2-3x-2)