Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
x3 + x2 + y3 - y2
= (x3 + y3) + (x2 - y2 )
= (x+y).(x2 -xy + y2 ) + (x-y).(x+y)
= (x+y).(x2 -xy + y2 + x -y)
Câu 2:
a) P = x - x2
P = - (x2 - 2.1/2.x + 1/4 - 1/4)
P = - (x -1/2)2 + 1/4
mà \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0.\)
Để M lớn nhất
Dấu "=" xảy ra khi
- (x-1/2)2 = 0 => x = 1/2
=> giá trị lớn nhất của M = 1/4 tại x = 1/2
a) \(B=\frac{3x^2+6x+10}{x^2+2x+5}\)
\(\Leftrightarrow B=3-\frac{5}{x^2+2x+5}\)
\(\Leftrightarrow B=3-\frac{5}{5\left(\frac{x^2}{5}+\frac{2x}{5}+\frac{5}{5}\right)}\Leftrightarrow B=3-\frac{1}{\frac{\left(x^2+2x+1\right)}{5}+\frac{4}{5}}\)( cho \(\left(x+1\right)^2=0\))
\(\Leftrightarrow maxB=3-\frac{1}{\frac{4}{5}}=\frac{7}{4}\) KHI X= -1
c) \(D=x^2-2x+y^2+4y+7\)
\(\Leftrightarrow D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2\)
\(\Leftrightarrow D=\left(x-1\right)^2+\left(y+2\right)^2+2\)
\(\Leftrightarrow minD=2\)KHI X= 1 và Y= -2
e) Câu này đề có vẻ sai bạn kiểm tra lại giúp mk ! mk làm theo đề đúng nka !
\(E=\frac{x^2-4x+1}{x^2}\)
\(\Leftrightarrow E=\frac{x^2\left(1-\frac{4}{x}+\frac{1}{x^2}\right)}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)
ĐẶT \(y=\frac{1}{x}\)\(\Leftrightarrow minE=-3\)KHI X = 1/2
Hai câu còn lại tối mk giải tiếp mk bận đi học rùi bạn thông cảm
\(3x^2+y^2+2x-2y=1\Leftrightarrow3x^2+y^2+2\left(x-y\right)=1\)
\(3x^2+y^2+2\left(x-y\right)+2xy-2xy\) thêm 2xy - 2xy
\(2x^2+x^2+y^2+2xy-2xy+2\left(x-y\right)=1\)
\(2x\left(x+y\right)+\left(x^2-2xy+y^2\right)+2\left(x-y\right)=1\)
\(2x\left(x+y\right)+\left(x-y\right)^2+2\left(x-y\right)=1\)
\(2x\left(x+y\right)+\left(x-y\right)^2+2\left(x-y\right)=2-1\Leftrightarrow2x\left(x+y\right)+\left(x-y\right)^2+2\left(x-y\right)+1=2\)
\(2x\left(x+y\right)+\left(x-y+1\right)^2=2\)
\(2x\left(x+y\right)=2-\left(x-y+1\right)^2\le2\) vì ( x-y+1)^2 >= 0 với mọi xy
rồi đến đây mik éo làm được nữa :))
mik làm 1 bài thôi nha mấy cái kia tương tự ha
a) (x-2)^2-(x-3)(x+3)=6
(x-2)^2-x^2+9=6
x^2-4x+4-x^2+9=6
-4x+13=6
-4x=-7
x=7/4
\(a.\)\(\frac{13x-16}{15}+\frac{x-32}{35}< \frac{x-6}{21}\)\(MC:105\)
\(\Leftrightarrow\frac{7\left(13x-16\right)}{105}+\frac{3\left(x-2\right)}{105}< \frac{5\left(x-6\right)}{105}\)
\(\text{Khử mẫu ta dc pt tương đương vs pt:}\)
\(\Leftrightarrow7\left(13x-16\right)+3\left(x-2\right)< 5\left(x-6\right)\)
\(\Leftrightarrow91x-112+3x-6< 5x-30\)
\(\Leftrightarrow94x-118< 5x-30\)
\(\Leftrightarrow94x-5x< 118-30\)
\(\Leftrightarrow89x< 88\)
\(\Leftrightarrow x< \frac{88}{89}\)
.\(b.\)\(\frac{5x+12}{14}+\frac{11x+28}{3}>\frac{4x+9}{17}\)\(MC:714\)
\(\text{Khi khử mẫu pt ta dc pt tương đương}:\):
\(\Leftrightarrow51\left(5x+12\right)+238\left(11x+28\right)>42\left(4x+9\right)\)
\(\Leftrightarrow255x+612+2618x+6664>168x+378\)
\(\Leftrightarrow2873x+7276>168x+378\)
\(\Leftrightarrow2873x-168x>-7276+378\)
\(\Leftrightarrow2705x>-6898\)
\(\Leftrightarrow x>-\frac{6898}{2705}\)
A=(\(\frac{x^3-1}{x\left(x-1\right)}\)-\(\frac{x^3-1}{x\left(x+1\right)}\)) : \(\frac{2\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}\)ĐKXĐ: x\(\ne\) -1, 1
A=\(\frac{1}{x\left(x+1\right)}\)x \(\frac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x-1\right)}\)
A=\(\frac{1}{2x^2-2x}\)
B=\(\frac{x+1}{x-2}\)-\(\frac{2x}{x+2}\)-\(\frac{2+5x}{x^2-4}\)ĐKXĐ : x\(\ne\)2, -2
B=\(\frac{x+1}{x-2_{ }}\)-\(\frac{2x}{x+2}\)-\(\frac{2+5x}{\left(x-2\right)\left(x+2\right)}\)
B=\(\frac{x^2+3x+2}{\left(x-2\right)\left(x+2\right)}\)-\(\frac{2x^2-4x}{\left(x-2\right)\left(x+2\right)}\)-\(\frac{2+5x}{\left(x-2\right)\left(x+2\right)}\)
B=\(\frac{-x^2+2x}{\left(x-2\right)\left(x+2\right)}\)
B=\(\frac{-x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
B=\(\frac{-x}{x+2}\)
\(a,\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=8x^3-27y^3\)
\(b,\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)
\(c,64-48x+12x^2-x^3=\left(4-x\right)^3\)
\(d,x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)
\(e,8x^3-60x^2y+150xy^2-125y^3=\left(2x-5y\right)^3\)
\(a,x^4-7x^2+6\)
\(=x^4-x^2-6x^2+6\)
\(=x^2\left(x^2-1\right)-6\left(x^2-1\right)\)
\(=\left(x^2-6\right)\left(x^2-1\right)\)
\(=\left(x+\sqrt{6}\right)\left(x-\sqrt{6}\right)\left(x+1\right)\left(x-1\right)\)
\(b,x^4+2x^2-3=x^4+3x^2-x^2-3\)
\(=x^2\left(x^2+3\right)-\left(x^2+3\right)\)
\(=\left(x^2-1\right)\left(x^2+3\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(x^2+3\right)\)
\(x^3+3x^2+2x=x\left(x^2+3x+2\right)=x\left(x+1\right)\left(x+2\right)\)